31 research outputs found

    Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background

    Get PDF
    The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability

    Nonfluent/Agrammatic PPA with In-Vivo Cortical Amyloidosis and Pick’s Disease Pathology

    Get PDF
    The role of biomarkers in predicting pathological findings in the frontotemporal dementia (FTD) clinical spectrum disorders is still being explored. We present comprehensive, prospective longitudinal data for a 66 year old, right-handed female who met current criteria for the nonfluent/agrammatic variant of primary progressive aphasia (nfvPPA). She first presented with a 3-year history of progressive speech and language impairment mainly characterized by severe apraxia of speech. Neuropsychological and general motor functions remained relatively spared throughout the clinical course. Voxel-based morphometry (VBM) showed selective cortical atrophy of the left posterior inferior frontal gyrus (IFG) and underlying insula that worsened over time, extending along the left premotor strip. Five years after her first evaluation, she developed mild memory impairment and underwent PET-FDG and PiB scans that showed left frontal hypometabolism and cortical amyloidosis. Three years later (11 years from first symptom), post-mortem histopathological evaluation revealed Pick's disease, with severe degeneration of left IFG, mid-insula, and precentral gyrus. Alzheimer’s disease (AD) (CERAD frequent/Braak Stage V) was also detected. This patient demonstrates that biomarkers indicating brain amyloidosis should not be considered conclusive evidence that AD pathology accounts for a typical FTD clinical/anatomical syndrome

    Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems

    Get PDF
    Acute gastrointestinal (GI) dysfunction and failure have been increasingly recognized in critically ill patients. The variety of definitions proposed in the past has led to confusion and difficulty in comparing one study to another. An international working group convened to standardize the definitions for acute GI failure and GI symptoms and to review the therapeutic options

    Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to SARS-CoV-2 infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished COVID-19 severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalised with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days post-symptom onset) or late (6-20 days post-symptom onset). Results Patients that survived severe COVID-19 showed IFN-dominated mucosal immune responses (IFN-γ, CXCL10 and CXCL13) early in infection. These early mucosal responses were absent in patients that would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by IL-2, IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal anti-viral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19

    Allogenic Umbilical Cord Tissue for Rotator Cuff Injuries.

    No full text
    Highly prone to injury, the rotator cuff greatly contributes to the stability and mobility of the shoulder. Clinicians prioritize conservative treatment, resorting to surgery only when necessary, although they are hindered by inherent limitations. Biological therapies, including perinatal tissue, such as umbilical cord (UC) tissue, hold promise for treating rotator cuff injuries (RCIs) in the field of regenerative medicine. This article qualitatively presents the in vitro, preclinical, clinical, and ongoing scientific literature exploring the application of UC tissue and associated mesenchymal stem cells in the context of RCIs. Employing the "Preferred Reporting Items for Systematic Reviews and Meta-analyses" guidelines, a systematic review was conducted. These studies have presented substantial evidence indicating that UC tissue and UC-derived mesenchymal stem cells are safe and potentially efficacious for managing RCIs, though more adequately powered randomized controlled trials are warranted to further establish efficacy and justify clinical use. [Abstract copyright: Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

    Neuropsychological, behavioral, and anatomical evolution in right temporal variant frontotemporal dementia: A longitudinal and post-mortem single case analysis

    No full text
    We describe a patient with semantic variant of frontotemporal dementia who received longitudinal clinical evaluations and structural MRI scans and subsequently came to autopsy. She presented with early behavior changes and semantic loss for foods and people and ultimately developed a pervasive semantic impairment affecting social-emotional as well as linguistic domains. Imaging revealed predominant atrophy of the right temporal lobe, with later involvement of the left, and pathology confirmed bilateral temporal involvement. Findings support the view that left and right anterior temporal lobes serve as semantic hubs that may be affected differentially in semantic variant by early, relatively unilateral damage

    Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination.

    No full text
    Chronic neuropathic pain (NP) is a growing clinical problem for which effective treatments, aside from non-steroidal anti-inflammatory drugs and opioids, are lacking. Cannabinoids are emerging as potentially promising agents to manage neuroimmune effects associated with nociception. In particular, Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their combination are being considered as therapeutic alternatives for treatment of NP. This study aimed to examine whether sex affects long-term outcomes on persistent mechanical hypersensitivity 7 weeks after ceasing cannabinoid administration. Clinically relevant low doses of THC, CBD, and a 1:1 combination of THC:CBD extracts, in medium chain triglyceride (MCT) oil, were orally gavaged for 14 consecutive days to age-matched groups of male and female sexually mature Sprague Dawley rats. Treatments commenced one day after surgically inducing a pro-nociceptive state using a peripheral sciatic nerve cuff. The analgesic efficacy of each phytocannabinoid was assessed relative to MCT oil using hind paw mechanical behavioural testing once a week for 9 weeks. In vivo intracellular electrophysiology was recorded at endpoint to characterize soma threshold changes in primary afferent sensory neurons within dorsal root ganglia (DRG) innervated by the affected sciatic nerve. The thymus, spleen, and DRG were collected post-sacrifice and analyzed for long-term effects on markers associated with T lymphocytes at the RNA level using qPCR. Administration of cannabinoids, particularly the 1:1 combination of THC, elicited a sustained mechanical anti-hypersensitive effect in males with persistent peripheral NP, which corresponded to beneficial changes in myelinated Aβ mechanoreceptive fibers. Specific immune cell markers associated with T cell differentiation and pro-inflammatory cytokines, previously implicated in repair processes, were differentially up-regulated by cannabinoids in males treated with cannabinoids, but not in females, warranting further investigation into sexual dimorphisms that may underlie treatment outcomes

    Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation.

    No full text
    Post-translational modifications play a key role in tau protein aggregation and related neurodegeneration. Because hyperphosphorylation alone does not necessarily cause tau aggregation, other post-translational modifications have been recently explored. Tau acetylation promotes aggregation and inhibits tau's ability to stabilize microtubules. Recent studies have shown co-localization of acetylated and phosphorylated tau in AD and some 4R tauopathies. We developed a novel monoclonal antibody against acetylated tau at lysine residue 274, which recognizes both 3R and 4R tau, and used immunohistochemistry and immunofluorescence to probe 22 cases, including AD and another eight familial or sporadic tauopathies. Acetylated tau was identified in all tauopathies except argyrophilic grain disease (AGD). AGD is an age-associated, common but atypical 4R tauopathy, not always associated with clinical progression. Pathologically, AGD is characterized by neuropil grains, pre-neurofibrillary tangles, and oligodendroglial coiled bodies, all recognized by phospho-tau antibodies. The lack of acetylated tau in these inclusions suggests that AGD represents a distinctive tauopathy. Our data converge with previous findings to raise the hypothesis that AGD could play a protective role against the spread of AD-related tau pathology. Tau acetylation as a key modification for the propagation tau toxicity deserves further investigation
    corecore