238 research outputs found

    Dynamic communicability predicts infectiousness

    Get PDF
    Using real, time-dependent social interaction data, we look at correlations between some recently proposed dynamic centrality measures and summaries from large-scale epidemic simulations. The evolving network arises from email exchanges. The centrality measures, which are relatively inexpensive to compute, assign rankings to individual nodes based on their ability to broadcast information over the dynamic topology. We compare these with node rankings based on infectiousness that arise when a full stochastic SI simulation is performed over the dynamic network. More precisely, we look at the proportion of the network that a node is able to infect over a fixed time period, and the length of time that it takes for a node to infect half the network.We find that the dynamic centrality measures are an excellent, and inexpensive, proxy for the full simulation-based measures

    Power system static and dynamic security studies for the 1st phase of Crete Island Interconnection

    Get PDF
    The island of Crete is currently served by an autonomous electrical system being fed by oil-fired (Heavy fuel or light Diesel oil) thermal power plants and renewables (wind and PVs). The peak load and annual electric energy consumption are approximately 600 MW and 3 TWh respectively; wind and photovoltaic parks contribute approximately 20% of the electricity needs of the island. Due to the expensive fuel used, the Cretan power system has very high electric energy generation cost compared to the Greek mainland. On the other side the limited size of the system poses severe limitations to the penetration of renewable energy sources, not allowing to further exploit the high wind and solar potential of the island. According to the Ten Year Network Development Plan (TYNDP) of the Greek TSO (Independent Power Transmission Operator S.A. IPTO S.A.), the interconnection of Crete to the mainland Transmission System of Greece will be realized through two links: A 150 kV HVAC link between the Peloponnese and the Crete (Phase I) and a HVDC link connecting the metropolitan area of Athens with Crete (Phase II). The total length of submarine and underground cable of the HVAC link will be approximately 174km; it is at the limits of the AC technology and the longest and deepest worldwide at 150 kV level. A number of studies have been conducted by a joint group of IPTO and Hellenic Electricity Distribution Network Operator (HEDNO) for the design of this interconnection. This paper presents briefly the power system static and dynamic studies conducted for the design of the AC link and its operation. Firstly, the paper presents the main results of the static security study regarding the calculation of the maximum power transfer capability of the link and the selection of the reactive power compensation scheme of the cable. Results from dynamic security analysis studies are also presented. The small-signal stability analysis concludes that a new (intra-area) electromechanical oscillation is introduced to the National System after the interconnection. The damping of the electromechanical oscillations is sufficient; however the operation of power system stabilizers at power plants located both at the mainland and at Crete power system can increase significantly the damping of important oscillation modes. Finally with respect to the risk of loss of synchronism after a significant disturbance in the system of Crete, such as a three-phase fault (“transient stability”)- enough safety margin is estimated by means of Critical Clearing Time calculations

    Power system static and dynamic security studies for the 1st phase of Crete Island Interconnection

    Get PDF
    The island of Crete is currently served by an autonomous electrical system being fed by oil-fired (Heavy fuel or light Diesel oil) thermal power plants and renewables (wind and PVs). The peak load and annual electric energy consumption are approximately 600 MW and 3 TWh respectively; wind and photovoltaic parks contribute approximately 20% of the electricity needs of the island. Due to the expensive fuel used, the Cretan power system has very high electric energy generation cost compared to the Greek mainland. On the other side the limited size of the system poses severe limitations to the penetration of renewable energy sources, not allowing to further exploit the high wind and solar potential of the island. According to the Ten Year Network Development Plan (TYNDP) of the Greek TSO (Independent Power Transmission Operator S.A. IPTO S.A.), the interconnection of Crete to the mainland Transmission System of Greece will be realized through two links: A 150 kV HVAC link between the Peloponnese and the Crete (Phase I) and a HVDC link connecting the metropolitan area of Athens with Crete (Phase II). The total length of submarine and underground cable of the HVAC link will be approximately 174km; it is at the limits of the AC technology and the longest and deepest worldwide at 150 kV level. A number of studies have been conducted by a joint group of IPTO and Hellenic Electricity Distribution Network Operator (HEDNO) for the design of this interconnection. This paper presents briefly the power system static and dynamic studies conducted for the design of the AC link and its operation. Firstly, the paper presents the main results of the static security study regarding the calculation of the maximum power transfer capability of the link and the selection of the reactive power compensation scheme of the cable. Results from dynamic security analysis studies are also presented. The small-signal stability analysis concludes that a new (intra-area) electromechanical oscillation is introduced to the National System after the interconnection. The damping of the electromechanical oscillations is sufficient; however the operation of power system stabilizers at power plants located both at the mainland and at Crete power system can increase significantly the damping of important oscillation modes. Finally with respect to the risk of loss of synchronism after a significant disturbance in the system of Crete, such as a three-phase fault (“transient stability”)- enough safety margin is estimated by means of Critical Clearing Time calculations

    Multiscale modelling of vascular tumour growth in 3D: the roles of domain size & boundary condition

    Get PDF
    We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumour's growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumour's response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour

    Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients

    Get PDF
    Outcomes for patients with hematologic malignancy infected with COVID-19 have not been aggregated. The objective of this study was to perform a systematic review and meta-analysis to estimate the risk of death and other important outcomes for these patients. We searched Pubmed and EMBASE up to August 20, 2020, to identify reports of patients with hematologic malignancy and COVID-19. The primary outcome was a pooled mortality estimate, considering all patients and only hospitalized patients. Secondary outcomes included risk of ICU admission and ventilation in hospitalized patients. Subgroup analyses included mortality stratified by age, treatment status, and malignancy subtype. Pooled prevalence, risk ratios (RR), and 95% confidence intervals (CI) were calculated using a random-effects model. 34 adult and 5 pediatric studies (3377 patients) from Asia, Europe, and North America were included (14/34 adult studies included only hospitalized patients). The risk of death amongst adult patients was 34% (95% CI 28-39, N=3240) in this sample of predominantly hospitalized patients. Patients aged >60 years had a significantly higher risk of death than patients 60 years have significantly higher mortality, and pediatric patients appear to be relatively spared. Recent cancer treatment does not appear to significantly increase the risk of death

    Spatio-temporal Models of Lymphangiogenesis in Wound Healing

    Full text link
    Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total

    The management of iron deficiency in inflammatory bowel disease

    Get PDF
    __Background__ Iron deficiency is a common and undertreated problem in inflammatory bowel disease (IBD). __Aim__ To develop an online tool to support treatment choice at the patient-specific level. __Methods__ Using the RAND/UCLA Appropriateness Method (RUAM), a European expert panel assessed the appropriateness of treatment regimens for a variety of clinical scenarios in patients with non-anaemic iron deficiency (NAID) and iron deficiency anaemia (IDA). Treatment options included adjustment of IBD medication only, oral iron supplementation, high-/low-dose intravenous (IV) regimens, IV iron plus erythropoietin-stimulating agent (ESA), and blood transfusion. The panel process consisted of two individual rating rounds and three plenary discussion meetings. __Results__ The panel reached agreement on 71% of treatment indications. 'No treatment' was never considered appropriate, and repeat treatment after previous failure was generally discouraged. For 98% of scenarios, at least one treatment was appropriate. Adjustment of IBD medication was deemed appropriate in all patients with active disease. Use of oral iron was mainly considered an option in NAID and mildly anaemic patients without disease activity. IV regimens were often judged appropriate, with high-dose IV iron being the preferred option in 77% of IDA scenarios. Blood transfusion and IV+ESA were indicated in exceptional cases only. __Conclusions__ The RUAM revealed high agreement amongst experts on the management of iron deficiency in patients with IBD. High-dose IV iron was more often considered appropriate than other options. To facilitate dissemination of the recommendations, panel outcomes were embedded in an online tool, accessible via http://ferroscope.com/

    Bistability versus Bimodal Distributions in Gene Regulatory Processes from Population Balance

    Get PDF
    In recent times, stochastic treatments of gene regulatory processes have appeared in the literature in which a cell exposed to a signaling molecule in its environment triggers the synthesis of a specific protein through a network of intracellular reactions. The stochastic nature of this process leads to a distribution of protein levels in a population of cells as determined by a Fokker-Planck equation. Often instability occurs as a consequence of two (stable) steady state protein levels, one at the low end representing the “off” state, and the other at the high end representing the “on” state for a given concentration of the signaling molecule within a suitable range. A consequence of such bistability has been the appearance of bimodal distributions indicating two different populations, one in the “off” state and the other in the “on” state. The bimodal distribution can come about from stochastic analysis of a single cell. However, the concerted action of the population altering the extracellular concentration in the environment of individual cells and hence their behavior can only be accomplished by an appropriate population balance model which accounts for the reciprocal effects of interaction between the population and its environment. In this study, we show how to formulate a population balance model in which stochastic gene expression in individual cells is incorporated. Interestingly, the simulation of the model shows that bistability is neither sufficient nor necessary for bimodal distributions in a population. The original notion of linking bistability with bimodal distribution from single cell stochastic model is therefore only a special consequence of a population balance model

    A flexible mathematical model platform for studying branching networks : experimentally validated using the model actinomycete, Streptomyces coelicolor

    Get PDF
    Branching networks are ubiquitous in nature and their growth often responds to environmental cues dynamically. Using the antibiotic-producing soil bacterium Streptomyces as a model we have developed a flexible mathematical model platform for the study of branched biological networks. Streptomyces form large aggregates in liquid culture that can impair industrial antibiotic fermentations. Understanding the features of these could aid improvement of such processes. The model requires relatively few experimental values for parameterisation, yet delivers realistic simulations of Streptomyces pellet and is able to predict features, such as the density of hyphae, the number of growing tips and the location of antibiotic production within a pellet in response to pellet size and external nutrient supply. The model is scalable and will find utility in a range of branched biological networks such as angiogenesis, plant root growth and fungal hyphal networks
    corecore