827 research outputs found
Witnessing the Growth of the Nearest Galaxy Cluster: Thermodynamics of the Virgo Cluster Outskirts
We present results from Suzaku Key Project observations of the Virgo Cluster,
the nearest galaxy cluster to us, mapping its X-ray properties along four long
`arms' extending beyond the virial radius. The entropy profiles along all four
azimuths increase with radius, then level out beyond , while the
average pressure at large radii exceeds Planck Sunyaev-Zel'dovich measurements.
These results can be explained by enhanced gas density fluctuations (clumping)
in the cluster's outskirts. Using a standard Navarro, Frenk and White (1997)
model, we estimate a virial mass, radius, and concentration parameter of
M, kpc, and , respectively. The inferred cumulative baryon fraction exceeds
the cosmic mean at along the major axis, suggesting enhanced
gas clumping possibly sourced by a candidate large-scale structure filament
along the north-south direction. The Suzaku data reveal a large-scale sloshing
pattern, with two new cold fronts detected at radii of 233 kpc and 280 kpc
along the western and southern arms, respectively. Two high-temperature regions
are also identified 1 Mpc towards the south and 605 kpc towards the west of
M87, likely representing shocks associated with the ongoing cluster growth.
Although systematic uncertainties in measuring the metallicity for low
temperature plasma remain, the data at large radii appear consistent with a
uniform metal distribution on scales of kpc and larger,
providing additional support for the early chemical enrichment scenario driven
by galactic winds at redshifts of 2-3.Comment: submitted to MNRA
A uniform metallicity in the outskirts of massive, nearby galaxy clusters
Suzaku measurements of a homogeneous metal distribution of Solar
in the outskirts of the nearby Perseus cluster suggest that chemical elements
were deposited and mixed into the intergalactic medium before clusters formed,
likely over 10 billion years ago. A key prediction of this early enrichment
scenario is that the intracluster medium in all massive clusters should be
uniformly enriched to a similar level. Here, we confirm this prediction by
determining the iron abundances in the outskirts () of a sample
of ten other nearby galaxy clusters observed with Suzaku for which robust
measurements based on the Fe-K lines can be made. Across our sample the iron
abundances are consistent with a constant value,
Solar ( for 25 degrees of freedom). This is remarkably similar to
the measurements for the Perseus cluster of Solar,
using the Solar abundance scale of Asplund et al. (2009).Comment: accepted for publication in MNRA
Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties
We develop a new method of combining cluster observables (number counts and
cluster-cluster correlation functions) and stacked weak lensing signals of
background galaxy shapes, both of which are available in a wide-field optical
imaging survey. Assuming that the clusters have secure redshift estimates, we
show that the joint experiment enables a self-calibration of important
systematic errors including the source redshift uncertainty and the cluster
mass-observable relation, by adopting a single population of background source
galaxies for the lensing analysis. It allows us to use the relative strengths
of stacked lensing signals at different cluster redshifts for calibrating the
source redshift uncertainty, which in turn leads to accurate measurements of
the mean cluster mass in each bin. In addition, our formulation of stacked
lensing signals in Fourier space simplifies the Fisher matrix calculations, as
well as the marginalization over the cluster off-centering effect, the most
significant uncertainty in stacked lensing. We show that upcoming wide-field
surveys yield stringent constraints on cosmological parameters including dark
energy parameters, without any priors on nuisance parameters that model
systematic uncertainties. Specifically, the stacked lensing information
improves the dark energy FoM by a factor of 4, compared to that from the
cluster observables alone. The primordial non-Gaussianity parameter can also be
constrained with a level of f_NL~10. In this method, the mean source redshift
is well calibrated to an accuracy of 0.1 in redshift, and the mean cluster mass
in each bin to 5-10% accuracies, which demonstrates the success of the
self-calibration of systematic uncertainties from the joint experiment.
(Abridged)Comment: 29 pages, 17 figures, 6 tables, accepted for publication in Phys.
Rev.
Cosmological Parameters from Observations of Galaxy Clusters
Studies of galaxy clusters have proved crucial in helping to establish the
standard model of cosmology, with a universe dominated by dark matter and dark
energy. A theoretical basis that describes clusters as massive,
multi-component, quasi-equilibrium systems is growing in its capability to
interpret multi-wavelength observations of expanding scope and sensitivity. We
review current cosmological results, including contributions to fundamental
physics, obtained from observations of galaxy clusters. These results are
consistent with and complementary to those from other methods. We highlight
several areas of opportunity for the next few years, and emphasize the need for
accurate modeling of survey selection and sources of systematic error.
Capitalizing on these opportunities will require a multi-wavelength approach
and the application of rigorous statistical frameworks, utilizing the combined
strengths of observers, simulators and theorists.Comment: 53 pages, 21 figures. To appear in Annual Review of Astronomy &
Astrophysic
X-ray bright active galactic nuclei in massive galaxy clusters III: New insights into the triggering mechanisms of cluster AGN
We present the results of a new analysis of the X-ray selected Active
Galactic Nuclei (AGN) population in the vicinity of 135 of the most massive
galaxy clusters in the redshift range of 0.2 < z < 0.9 observed with Chandra.
With a sample of more than 11,000 X-ray point sources, we are able to measure,
for the first time, evidence for evolution in the cluster AGN population beyond
the expected evolution of field AGN. Our analysis shows that overall number
density of cluster AGN scales with the cluster mass as .
There is no evidence for the overall number density of cluster member X-ray AGN
depending on the cluster redshift in a manner different than field AGN, nor
there is any evidence that the spatial distribution of cluster AGN (given in
units of the cluster overdensity radius r_500) strongly depends on the cluster
mass or redshift. The scaling relation we measure is
consistent with theoretical predictions of the galaxy merger rate in clusters,
which is expected to scale with the cluster velocity dispersion, , as or . This consistency suggests that AGN in
clusters may be predominantly triggered by galaxy mergers, a result that is
further corroborated by visual inspection of Hubble images for 23
spectroscopically confirmed cluster member AGN in our sample. A merger-driven
scenario for the triggering of X-ray AGN is not strongly favored by studies of
field galaxies, however, suggesting that different mechanisms may be primarily
responsible for the triggering of cluster and field X-ray AGN.Comment: 21 Pages, 8 figures, 5 tables. Submitted to MNRAS. Comments are
welcome, and please request Steven Ehlert for higher resolution figure
Baryons in the outskirts of the X-ray brightest galaxy cluster
Studies of the diffuse X-ray emitting gas in galaxy clusters have provided
powerful constraints on cosmological parameters and insights into plasma
astrophysics. However, measurements of the faint cluster outskirts have become
possible only over the last few years. Here, we present results from Suzaku
observations of the Perseus Cluster, which provide our best measurements of the
thermodynamic properties of the ICM at large radii to date. In particular, we
focus on the details of the data analysis procedure and discuss the evidence
for a clumpy distribution of the gas in the outskirts, which is important for
understanding the physics of the ongoing growth of clusters from the
surrounding cosmic web.Comment: To appear in the proceedings of the conference "Suzaku 2011 Exploring
the X-ray Universe: Suzaku and Beyond" which will be published as e-book by
AI
X-ray Bright Active Galactic Nuclei in Massive Galaxy Clusters II: The Fraction of Galaxies Hosting Active Nuclei
We present a measurement of the fraction of cluster galaxies hosting X-ray
bright Active Galactic Nuclei (AGN) as a function of clustercentric distance
scaled in units of . Our analysis employs high quality Chandra X-ray
and Subaru optical imaging for 42 massive X-ray selected galaxy cluster fields
spanning the redshift range of . In total, our study involves
176 AGN with bright () optical counterparts above a keV flux
limit of . When excluding
central dominant galaxies from the calculation, we measure a cluster-galaxy AGN
fraction in the central regions of the clusters that is times lower
that the field value. This fraction increases with clustercentric distance
before becoming consistent with the field at . Our data
exhibit similar radial trends to those observed for star formation and
optically selected AGN in cluster member galaxies, both of which are also
suppressed near cluster centers to a comparable extent. These results strongly
support the idea that X-ray AGN activity and strong star formation are linked
through their common dependence on available reservoirs of cold gas.Comment: 9 Pages, 4 Figures, accepted for publication in MNRAS, please contact
Steven Ehlert ([email protected]) with any querie
Thermodynamic Profiles of Galaxy Clusters from a Joint X-ray/SZ Analysis
We jointly analyze Bolocam Sunyaev-Zeldovich (SZ) effect and Chandra X-ray
data for a set of 45 clusters to derive gas density and temperature profiles
without using spectroscopic information. The sample spans the mass and redshift
range
and . We define cool-core (CC) and non-cool core (NCC)
subsamples based on the central X-ray luminosity, and 17/45 clusters are
classified as CC. In general, the profiles derived from our analysis are found
to be in good agreement with previous analyses, and profile constraints beyond
are obtained for 34/45 clusters. In approximately 30% of the CC
clusters our analysis shows a central temperature drop with a statistical
significance of ; this modest detection fraction is due mainly to a
combination of coarse angular resolution and modest S/N in the SZ data. Most
clusters are consistent with an isothermal profile at the largest radii near
, although 9/45 show a significant temperature decrease with
increasing radius. The sample mean density profile is in good agreement with
previous studies, and shows a minimum intrinsic scatter of approximately 10%
near . The sample mean temperature profile is consistent
with isothermal, and has an intrinsic scatter of approximately 50% independent
of radius. This scatter is significantly higher compared to earlier X-ray-only
studies, which find intrinsic scatters near 10%, likely due to a combination of
unaccounted for non-idealities in the SZ noise, projection effects, and sample
selection.Comment: 42 pages, 52 figure
Azimuthally Resolved X-Ray Spectroscopy to the Edge of the Perseus Cluster
We present the results from extensive, new observations of the Perseus
Cluster of galaxies, obtained as a Suzaku Key Project. The 85 pointings
analyzed span eight azimuthal directions out to 2 degrees = 2.6 Mpc, to and
beyond the virial radius r_200 ~ 1.8 Mpc, offering the most detailed X-ray
observation of the intracluster medium (ICM) at large radii in any cluster to
date. The azimuthally averaged density profile for r>0.4r_200 is relatively
flat, with a best-fit power-law index of 1.69+/-0.13 significantly smaller than
expected from numerical simulations. The entropy profile in the outskirts lies
systematically below the power-law behavior expected from large-scale structure
formation models which include only the heating associated with gravitational
collapse. The pressure profile beyond ~0.6r_200 shows an excess with respect to
the best-fit model describing the SZ measurements for a sample of clusters
observed with Planck. The inconsistency between the expected and measured
density, entropy, and pressure profiles can be explained primarily by an
overestimation of the density due to inhomogeneous gas distribution in the
outskirts; there is no evidence for a bias in the temperature measurements
within the virial radius. We find significant differences in thermodynamic
properties of the ICM at large radii along the different arms. Along the
cluster minor axis, we find a flattening of the entropy profiles outside
~0.6r_200, while along the major axis, the entropy rises all the way to the
outskirts. Correspondingly, the inferred gas clumping factor is typically
larger along the minor than along the major axis.Comment: submitted to MNRA
- …