7 research outputs found

    Downregulation of APOBEC3G by xenotropic murine leukemia-virus related virus (XMRV) in prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a gammaretrovirus that was discovered in prostate cancer tissues. Recently, it has been proposed that XMRV is a laboratory contaminant and may have originated via a rare recombination event. Host restriction factor APOBEC3G (A3G) has been reported to severely restrict XMRV replication in human peripheral blood mononuclear cells. Interestingly, XMRV infects and replicates efficiently in prostate cancer cells of epithelial origin. It has been proposed that due to lack off or very low levels of A3G protein XMRV is able to productively replicate in these cells.</p> <p>Findings</p> <p>This report builds on and challenges the published data on the absence of A3G protein in prostate epithelial cells lines. We demonstrate the presence of A3G in prostate epithelial cell lines (LNCaP and DU145) by western blot and mass spectrometry. We believe the discrepancy in A3G detection is may be due to selection and sensitivity of A3G antibodies employed in the prior studies. Our results also indicate that XMRV produced from A3G expressing LNCaP cells can infect and replicate in target cells. Most importantly our data reveal downregulation of A3G in XMRV infected LNCaP and DU145 cells.</p> <p>Conclusions</p> <p>We propose that XMRV replicates efficiently in prostate epithelial cells by downregulating A3G expression. Given that XMRV lacks accessory proteins such as HIV-1 Vif that are known to counteract A3G function in human cells, our data suggest a novel mechanism by which retroviruses can counteract the antiviral effects of A3G proteins.</p

    Serum chymase levels correlate with severe dengue warning signs and clinical fluid accumulation in hospitalized pediatric patients.

    Get PDF
    Dengue induces a spectrum of severity in humans from the milder dengue fever to severe disease, or dengue hemorrhagic fever (DHF). Chymase is a candidate biomarker that may aid dengue prognosis. This prospective study aimed to identify whether warning signs of severe dengue, including hypovolemia and fluid accumulation, were associated with elevated chymase. Serum chymase levels were quantified prospectively and longitudinally in hospitalized pediatric dengue patients in Sri Lanka. Warning signs were determined based on daily clinical assessments, laboratory tests and ultrasound findings. Chymase was significantly elevated during the acute phase of disease in DHF or Severe dengue, defined by either the 1997 or 2009 WHO diagnosis guidelines, and persisted longer in the most severe patients. Chymase levels were higher in patients with narrow pulse pressure and clinical warning signs such as severe leakage, fluid accumulation, pleural effusion, gall-bladder wall thickening and rapid haematocrit rise concurrent with thrombocytopenia. No association between chymase and liver enlargement was observed. This study confirms that serum chymase levels are associated with DHF/Severe dengue disease in hospitalized pediatric patients. Chymase levels correlate with warning signs of vascular dysfunction highlighting the possible functional role of chymase in vascular leakage during dengue

    Dengue virus-elicited tryptase induces endothelial permeability and shock.

    Get PDF
    Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we identified that a MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection, through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in two independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock
    corecore