108 research outputs found

    A practical guide and software for analysing pairwise comparison experiments

    Get PDF
    Most popular strategies to capture subjective judgments from humans involve the construction of a unidimensional relative measurement scale, representing order preferences or judgments about a set of objects or conditions. This information is generally captured by means of direct scoring, either in the form of a Likert or cardinal scale, or by comparative judgments in pairs or sets. In this sense, the use of pairwise comparisons is becoming increasingly popular because of the simplicity of this experimental procedure. However, this strategy requires non-trivial data analysis to aggregate the comparison ranks into a quality scale and analyse the results, in order to take full advantage of the collected data. This paper explains the process of translating pairwise comparison data into a measurement scale, discusses the benefits and limitations of such scaling methods and introduces a publicly available software in Matlab. We improve on existing scaling methods by introducing outlier analysis, providing methods for computing confidence intervals and statistical testing and introducing a prior, which reduces estimation error when the number of observers is low. Most of our examples focus on image quality assessment.Comment: Code available at https://github.com/mantiuk/pwcm

    High-fidelity imaging : the computational models of the human visual system in high dynamic range video compression, visible difference prediction and image processing

    Get PDF
    As new displays and cameras offer enhanced color capabilities, there is a need to extend the precision of digital content. High Dynamic Range (HDR) imaging encodes images and video with higher than normal bit-depth precision, enabling representation of the complete color gamut and the full visible range of luminance. This thesis addresses three problems of HDR imaging: the measurement of visible distortions in HDR images, lossy compression for HDR video, and artifact-free image processing. To measure distortions in HDR images, we develop a visual difference predictor for HDR images that is based on a computational model of the human visual system. To address the problem of HDR image encoding and compression, we derive a perceptually motivated color space for HDR pixels that can efficiently encode all perceivable colors and distinguishable shades of brightness. We use the derived color space to extend the MPEG-4 video compression standard for encoding HDR movie sequences. We also propose a backward-compatible HDR MPEG compression algorithm that encodes both a low-dynamic range and an HDR video sequence into a single MPEG stream. Finally, we propose a framework for image processing in the contrast domain. The framework transforms an image into multi-resolution physical contrast images (maps), which are then rescaled in just-noticeable-difference (JND) units. The application of the framework is demonstrated with a contrast-enhancing tone mapping and a color to gray conversion that preserves color saliency.Aktuelle Innovationen in der Farbverarbeitung bei Bildschirmen und Kameras erzwingen eine Präzisionserweiterung bei digitalen Medien. High Dynamic Range (HDR) kodieren Bilder und Video mit einer grösseren Bittiefe pro Pixel, und ermöglichen damit die Darstellung des kompletten Farbraums und aller sichtbaren Helligkeitswerte. Diese Arbeit konzentriert sich auf drei Probleme in der HDR-Verarbeitung: Messung von für den Menschen störenden Fehlern in HDR-Bildern, verlustbehaftete Kompression von HDR-Video, und visuell verlustfreie HDR-Bildverarbeitung. Die Messung von HDR-Bildfehlern geschieht mittels einer Vorhersage von sichtbaren Unterschieden zweier HDR-Bilder. Die Vorhersage basiert dabei auf einer Modellierung der menschlichen Sehens. Wir addressieren die Kompression und Kodierung von HDR-Bildern mit der Ableitung eines perzeptuellen Farbraums für HDR-Pixel, der alle wahrnehmbaren Farben und deren unterscheidbaren Helligkeitsnuancen effizient abbildet. Danach verwenden wir diesen Farbraum für die Erweiterung des MPEG-4 Videokompressionsstandards, welcher sich hinfort auch für die Kodierung von HDR-Videosequenzen eignet. Wir unterbreiten weiters eine rückwärts-kompatible MPEG-Kompression von HDR-Material, welche die übliche YUV-Bildsequenz zusammen mit dessen HDRVersion in einen gemeinsamen MPEG-Strom bettet. Abschliessend erklären wir unser Framework zur Bildverarbeitung in der Kontrastdomäne. Das Framework transformiert Bilder in mehrere physikalische Kontrastauflösungen, um sie danach in Einheiten von just-noticeable-difference (JND, noch erkennbarem Unterschied) zu reskalieren. Wir demonstrieren den Nutzen dieses Frameworks anhand von einem kontrastverstärkenden Tone Mapping-Verfahren und einer Graukonvertierung, die die urspr ünglichen Farbkontraste bestmöglich beibehält

    Distilling Style from Image Pairs for Global Forward and Inverse Tone Mapping

    Full text link
    Many image enhancement or editing operations, such as forward and inverse tone mapping or color grading, do not have a unique solution, but instead a range of solutions, each representing a different style. Despite this, existing learning-based methods attempt to learn a unique mapping, disregarding this style. In this work, we show that information about the style can be distilled from collections of image pairs and encoded into a 2- or 3-dimensional vector. This gives us not only an efficient representation but also an interpretable latent space for editing the image style. We represent the global color mapping between a pair of images as a custom normalizing flow, conditioned on a polynomial basis of the pixel color. We show that such a network is more effective than PCA or VAE at encoding image style in low-dimensional space and lets us obtain an accuracy close to 40 dB, which is about 7-10 dB improvement over the state-of-the-art methods.Comment: Published in European Conference on Visual Media Production (CVMP '22

    Single-frame Regularization for Temporally Stable CNNs

    Get PDF
    Convolutional neural networks (CNNs) can model complicated non-linear relations between images. However, they are notoriously sensitive to small changes in the input. Most CNNs trained to describe image-to-image mappings generate temporally unstable results when applied to video sequences, leading to flickering artifacts and other inconsistencies over time. In order to use CNNs for video material, previous methods have relied on estimating dense frame-to-frame motion information (optical flow) in the training and/or the inference phase, or by exploring recurrent learning structures. We take a different approach to the problem, posing temporal stability as a regularization of the cost function. The regularization is formulated to account for different types of motion that can occur between frames, so that temporally stable CNNs can be trained without the need for video material or expensive motion estimation. The training can be performed as a fine-tuning operation, without architectural modifications of the CNN. Our evaluation shows that the training strategy leads to large improvements in temporal smoothness. Moreover, for small datasets the regularization can help in boosting the generalization performance to a much larger extent than what is possible with na\"ive augmentation strategies

    HDR-VDP-3: A multi-metric for predicting image differences, quality and contrast distortions in high dynamic range and regular content

    Full text link
    High-Dynamic-Range Visual-Difference-Predictor version 3, or HDR-VDP-3, is a visual metric that can fulfill several tasks, such as full-reference image/video quality assessment, prediction of visual differences between a pair of images, or prediction of contrast distortions. Here we present a high-level overview of the metric, position it with respect to related work, explain the main differences compared to version 2.2, and describe how the metric was adapted for the HDR Video Quality Measurement Grand Challenge 2023
    • …
    corecore