457 research outputs found
Variazione degli stock di carbonio del suolo in seguito ai processi di abbandono dei coltivi: il caso studio dell\u2019isola di Pantelleria (TP)
The recent abandonment of marginal agricultural areas in the Mediterranean has caused an increase of the surface occupied by pre-forest and forest formations. In order to study the carbon accumulation processes on Pantelleria Island was selected a North-facing area. This area includes 5 stages of succession (sds) that compose a chronosequence (from 0 to 30 years) to understand soil C accumulation processes after abandonment. These are abandoned vineyards or caperbushes, not disturbed (grazing, fire) since agricultural abandonment, and they are situated in thermomediterranean belt and on the same parent material and consequently considered in the same ecological conditions. Samples at 1 cm, 10 cm and 40 cm depth, respectively, were taken for every sds in three different soil relief areas. Litter samples were taken too. Organic carbon content was determined for every sample. Carbon content increases from a sds to the next one. There is a duplication of C from sds0 (cultivated field) to sd1 (abandoned since few years) and from sds4 (abandoned since 16-30 years) to sds5 (abandoned since > 30 years). It seems that different types of vegetation play a key-role in soil C dynamics and there are 85 t C ha-1 in the top 40 cm of the soil after 30 years from the abandonment in the chronosequence and an annual C sequestration rate equal to 3.4 t ha-1. These results show that revegetation offers good opportunities to sequestrate CO2 from the atmosphere and, therefore, to mitigate the greenhouse effect as it is requested by international agreements
Structure-properties relationships of polyhedral oligomeric silsesquioxane (POSS) filled PS nanocomposites
The polyhedral oligomeric silsesquioxane (POSS) additivated polystyrene (PS) based nanocomposites were prepared by melt processing and the structure-properties relationships of the POSS-PS systems were compared to those of the neat PS. In order to investigate the effect of these structural parameters on the final properties of the polymer nanocomposites, five different kinds of POSS samples were used, in particular, POSS with different inorganic cage and with different organic pendent groups. The rheological investigation suggests clearly that the POSS acts as a plasticizer and that the processability of the PS was positively modified. The affinity between the POSS samples and the PS matrix was estimated by the calculated theoretical solubility parameters, considering the Hoy’s method and by morphology analysis. Minor difference between the solubility parameter of POSS and the matrix means better compatibility and no aggregation tendency. Furthermore, the POSS loading leads to a decrease of the rigidity, of the glass transition temperature and of the damping factor of the nanocomposite systems. The loading of different POSS molecules with open cage leads to a more pronounced effect on all the investigated properties that the loading of the POSS molecules with closed cage. Moreover, the melt properties are significantly influenced by the type of inorganic framework, by the type of the pendent organic groups and by the interaction between the POSS organic groups and the host matrix, while, the solid state properties appears to be influenced more by the kind of cage
Litter contribution to soil organic carbon in the processes of agriculture abandon
The mechanisms of litter decomposition, translocation and stabilization into soil layers are fundamental processes in the functioning of the ecosystem, as they regulate the cycle of soil organic matter (SOM) and CO2 emission into the atmosphere. In this study the contribution of litters of different stages of Mediterranean secondary succession on carbon sequestration was investigated, analyzing the role of earthworms in the translocation of SOM into the soil profile. For this purpose the δ13C difference between meadow C4-C soil and C3-C litter was used in a field experiment. Four undisturbed litters of different stages of succession (45, 70, 100 and 120 since agriculture abandon) were collected and placed on the top of isolated C4 soil cores. The litter contribution to C stock was affected by plant species and it increased with the age of the stage of secondary succession. One year after the litter position, the soil organic carbon increased up to 40% in comparison to soils not treated with litter after 120 years of abandon. The new carbon derived from C3 litter was decomposed and transferred into soil profile thanks to earthworms and the leaching of dissolved organic carbon. After 1 year the carbon increase attributed to earthworm activity was 6 and 13% in the soils under litter of fields abandoned for 120 and 45 years, respectively
The effects of post-pasture woody plant colonization on soil and aboveground litter carbon and nitrogen along a bioclimatic transect.
We investigated the effects of woody plant colonization of abandoned pastures
on soil and litter organic carbon (C) stocks and nitrogen (N) content along a
bioclimatic transect in a semi-arid environment (Sicily, Italy). Soil samples
were taken in three successional stages (grazed pasture, shrubland, forest)
within each of three bioclimates (supramediterranean - \u201csupra\u201d, mesomediterranean
- \u201cmeso\u201d, thermomediterranean - \u201cthermo\u201d). Organic C and N in litter
and soil (0-10 cm and 10-30 cm depth) were determined, as well as soil bulk
density. Especially at 0-10 cm depth, changes in C and N contents along successional
stages differed among bioclimates. Soil organic carbon (SOC) stock
decreased from pasture to shrubland and increased from shrubland to forest in
\u201csupra\u201d, increased from pasture to shrubland and then remained stable in
\u201cthermo\u201d, and was stable in \u201cmeso\u201d. Soil C/N ratio decreased with succession
in \u201csupra\u201d, showed no significant trend in \u201cmeso\u201d, and increased with succession
in \u201cthermo\u201d. Litter C stock increased with succession in \u201cmeso\u201d, increased
from pasture to shrubland and decreased from shrubland to forest in
\u201cthermo\u201d, and increased from pasture to shrubland and then remained stable
in \u201csupra\u201d. Litter C/N ratio increased in \u201cthermo\u201d and \u201csupra\u201d from pasture to
shrubland and from shrubland to forest, but did not change significantly with
succession in \u201cmeso\u201d. The different trends in SOC among bioclimates may be
caused by changes in the importance of litter input, litter decay rate and mineralization.
Successional changes in \u201cmeso\u201d and \u201csupra\u201d appeared to be most
affected by litter quality, while those in \u201cthermo\u201d appeared to be strongly influenced
by limited litter decay due to low soil moisture and high temperature
Carbon stock increases up to old growth forest along a secondary succession in Mediterranean island ecosystems
The occurrence of old-growth forests is quite limited in Mediterranean islands, which have been subject to particularly pronounced human impacts. Little is known about the carbon stocks of such peculiar ecosystems compared with different stages of secondary succession. We investigated the carbon variation in aboveground woody biomass, in litter and soil, and the nitrogen variation in litter and soil, in a 100 years long secondary succession in Mediterranean ecosystems. A vineyard, three stages of plant succession (high maquis, maquis-forest, and forest-maquis), and an old growth forest were compared. Soil samples at two soil depths (0-15 and 15-30 cm), and two litter types, relatively undecomposed and partly decomposed, were collected. Carbon stock in aboveground woody biomass increased from 6 Mg ha-1 in the vineyard to 105 Mg ha-1 in old growth forest. Along the secondary succession, soil carbon considerably increased from about 33 Mg ha-1 in the vineyard to about 69 Mg ha-1 in old growth forest. Soil nitrogen has more than doubled, ranging from 4.1 Mg ha-1 in the vineyard to 8.8 Mg ha-1 in old growth forest. Both soil parameters were found to be affected by successional stage and soil depth but not by their interaction. While the C/N ratio in the soil remained relatively constant during the succession, the C/N ratio of the litter strongly decreased, probably following the progressive increase in the holm oak contribution. While carbon content in litter decreased along the succession, nitrogen content slightly increased. Overall, carbon stock in aboveground woody biomass, litter and soil increased from about 48 Mg ha-1 in the vineyard to about 198 Mg ha-1 in old growth forest. The results of this study indicate that, even in Mediterranean environments, considerable amounts of carbon may be stored through secondary succession processes up to old growth forest.The occurrence of old-growth forests is quite limited in Mediterranean islands, which have been subject to particularly pronounced human impacts. Little is known about the carbon stocks of such peculiar ecosystems compared with different stages of secondary succession. We investigated the carbon variation in aboveground woody biomass, in litter and soil, and the nitrogen variation in litter and soil, in a 100 years long secondary succession in Mediterranean ecosystems. A vineyard, three stages of plant succession (high maquis, maquis-forest, and forest-maquis), and an old growth forest were compared. Soil samples at two soil depths (0-15 and 15-30 cm), and two litter types, relatively undecomposed and partly decomposed, were collected. Carbon stock in aboveground woody biomass increased from 6 Mg ha(-1) in the vineyard to 105 Mg ha(-1) in old growth forest. Along the secondary succession, soil carbon considerably increased from about 33 Mg ha(-1) in the vineyard to about 69 Mg ha(-1) in old growth forest. Soil nitrogen has more than doubled, ranging from 4.1 Mg ha(-1) in the vineyard to 8.8 Mg ha(-1) in old growth forest. Both soil parameters were found to be affected by successional stage and soil depth but not by their interaction. While the C/N ratio in the soil remained relatively constant during the succession, the C/N ratio of the litter strongly decreased, probably following the progressive increase in the holm oak contribution. While carbon content in litter decreased along the succession, nitrogen content slightly increased. Overall, carbon stock in aboveground woody biomass, litter and soil increased from about 48 Mg ha(-1) in the vineyard to about 198 Mg ha(-1) in old growth forest. The results of this study indicate that, even in Mediterranean environments, considerable amounts of carbon may be stored through secondary succession processes up to old growth forest
SARS-CoV-2 booster vaccination rescues attenuated IgG1 memory B cell response in primary antibody deficiency patients
BACKGROUND: Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination.
METHODS: Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination.
RESULTS: After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4
CONCLUSION: Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals
mRNA vaccine boosting enhances antibody responses against SARS-CoV-2 Omicron variant in individuals with antibody deficiency syndromes
Individuals with primary antibody deficiency (PAD) syndromes have poor humoral immune responses requiring immunoglobulin replacement therapy. We followed individuals with PAD after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination by evaluating their immunoglobulin replacement products and serum for anti-spike binding, Fcγ receptor (FcγR) binding, and neutralizing activities. The immunoglobulin replacement products tested have low anti-spike and receptor-binding domain (RBD) titers and neutralizing activity. In coronavirus disease 2019 (COVID-19)-naive individuals with PAD, anti-spike and RBD titers increase after mRNA vaccination but wane by 90 days. Those vaccinated after SARS-CoV-2 infection develop higher and more sustained responses comparable with healthy donors. Most vaccinated individuals with PAD have serum-neutralizing antibody titers above an estimated correlate of protection against ancestral SARS-CoV-2 and Delta virus but not against Omicron virus, although this is improved by boosting. Thus, some immunoglobulin replacement products likely have limited protective activity, and immunization and boosting of individuals with PAD with mRNA vaccines should confer at least short-term immunity against SARS-CoV-2 variants, including Omicron
- …