49 research outputs found

    A comparative ab initio study of the ferroelectric behaviour in KNO3 and CaCO3

    Get PDF
    Potassium nitrate exhibits a reentrant phase transformation, where a metastable ferroelectric phase (gamma-KNO3) is formed upon cooling from high temperature. The layered structure of this ferroelectric phase is composed of alternating layers of potassium ions and nitrate groups; wherein, a central nitrogen atom is coordinated by three equilateral triangular oxygen atoms. The group layer is located less than midway between the cation layers, giving rise to a polar structure. From a structural perspective, the calcite phase of calcium carbonate looks quite similar to this ferroelectric phase; however; it does not exhibit a ferroelectric transition. In this work we have performed an ab initio computational analysis to study the: structural stability, electronic characteristics, and bonding of various phases and ferroelectric properties of CaCO3 and KNO3. We find that both material systems have mixed covalent and ionic bonding. The covalent interactions are within the group atoms of carbonate and nitrate atoms while the ionic interactions occur between the negatively charged ( carbonate or nitrate) group and the calcium or potassium cations. For the low temperature stable phase of CaCO3 (calcite), however, there is a slight covalency between the cations and the oxygen atoms of the group. This latter interaction results in the crystallization of CaCO3 in the calcite form and prevents a ferroelectric transition. We suggest that, in analogy to KNO3, a metastable form of CaCO3 may also exist, similar to the phase of gamma-KNO3 that should have a spontaneous polarization equal to 30.6 mu C cm(-2), twice that of gamma-KNO3. Moreover, our analysis indicates that this material should have a coercive field smaller than that of gamma-KNO3

    Thermodynamics of Polydomain Ferroelectric Bilayers and Graded Multilayers

    Full text link
    The equilibrium domain structure and its evolution under an electric field in ferroelectric bilayers and graded multilayers are considered. The equilibrium bilayer is self-poled and contains a single-domain and a polydomain (with 180 domains) layers. The polarization of a graded multilayer proceeds by movement of wedge-like domains as a result of progressive transformation of polydomain layers to a single-domain state. The theory provides the principal explanation of peculiarities of dielectric behavior of graded ferroelectric films and can be applied to graded ferromagnetics and ferroelastics.Comment: 4 pages, 3 figure

    Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells

    Get PDF
    The band structure, quantum confinement of charge carriers, and their localization affect the optoelectronic properties of compound semiconductor heterostructures and multiple quantum wells (MQWs). We present here the results of a systematic first-principles based density functional theory (DFT) investigation of the dependence of the valence band offsets and band bending in polar and non-polar strain-free and in-plane strained heteroepitaxial In x Ga1- xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with [12¯10]InGaN // [12¯10]GaN and [0001]InGaN // [0001]GaN epitaxial alignments, the valence band offset changes linearly from 0 to 0.57 eV as the In composition is varied from 0 (GaN) to 1 (InN). These offsets are relatively insensitive to the misfit strain between InGaN and GaN. On the other hand, for polar c-plane strain-free heterostructures with [101¯0]InGaN // [101¯0]GaN and [12¯10]InGaN // [12¯10]GaN epitaxial alignments, the valence band offset increases nonlinearly from 0 eV (GaN) to 0.90 eV (InN). This is significantly reduced beyond x ≥ 0.5 by the effect of the equi-biaxial misfit strain. Thus, our results affirm that a combination of mechanical boundary conditions, epitaxial orientation, and variation in In concentration can be used as design parameters to rapidly tailor the band offsets in InGaN/GaN MQWs. Typically, calculations of the built-in electric field in complex semiconductor structures often must rely upon sequential optimization via repeated ab initio simulations. Here, we develop a formalism that augments such first-principles computations by including an electrostatic analysis (ESA) using Maxwell and Poisson\u27s relations, thereby converting laborious DFT calculations into finite difference equations that can be rapidly solved. We use these tools to determine the bound sheet charges and built-in electric fields in polar epitaxial InGaN/GaN MQWs on c-plane GaN substrates for In compositions x = 0.125, 0.25,…, and 0.875. The results of the continuum level ESA are in excellent agreement with those from the atomistic level DFT computations, and are, therefore, extendable to such InGaN/GaN MQWs with an arbitrary In composition

    Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    Get PDF
    Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)(3), (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25-800 degrees C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 mu C cm(-2)degrees C-1, comparable to bulk values) at a growth temperature of 550 degrees C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process. (C) 2013 AIP Publishing LLC

    Use of electron beam lithography to selectively decompose metalorganics into patterned thin‐film superconductors

    Full text link
    Fine line superconductors, approximately 5 μm in width and 260 nm thick, were formed from Y‐Ba‐Cu on 〈100〉SrTiO3 by the combined methods of metalorganic deposition and selective area electron beam exposure. The lines were written in metal neodecanoates using an electron beam having a spot size of 0.25 μm and an energy of 25 kV. The dosage of the exposure was 1200 μC/cm2. Unexposed areas were removed with a 30 s xylene wash. A 500 °C pyrolysis in air for 300 s followed by rapid thermal annealing in oxygen produced lines having superconducting onsets above 90 K and zero resistance at 69 K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70966/2/APPLAB-53-6-526-1.pd

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure

    Management of Vascular Risk Factors in the Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST)

    Get PDF
    BackgroundThe Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST) is a multicenter randomized trial of stenting versus endarterectomy in patients with symptomatic and asymptomatic carotid disease. This study assesses management of vascular risk factors.Methods and ResultsManagement was provided by the patient's physician, with biannual monitoring results collected by the local site. Therapeutic targets were low‐density lipoprotein, cholesterol <100 mg/dL, systolic blood pressure <140 mm Hg, fasting blood glucose <126 mg/dL, and nonsmoking status. Optimal control was defined as achieving all 4 goals concurrently. Generalized estimating equations were used to compare risk factors at baseline with those observed in scheduled follow‐up visits for up to 48 months. In the analysis cohort of 2210, significant improvements in risk‐factor control were observed across risk factors for all follow‐up visits compared with baseline. At 48 months, achievement of the low‐density lipoprotein cholesterol goal improved from 59.1% to 73.6% (P<0.001), achievement of the systolic blood pressure goal improved from 51.6% to 65.1% (P<0.001), achievement of the glucose goal improved from 74.9% to 80.7% (P=0.0101), and nonsmoking improved from 74.4% to 80.9% (P<0.0001). The percentage with optimal risk‐factor control also improved significantly, from 16.7% to 36.2% (P<0.001), but nearly 2 of 3 study participants did not achieve optimal control during the study.ConclusionsSite‐based risk‐factor control improved significantly in the first 6 months and over the long term in CREST but was often suboptimal. Intensive medical management should be considered for future trials of carotid revascularization.Clinical Trial RegistrationURL: ClinicalTrials.gov. Unique identifier: NCT00004732

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma
    corecore