9 research outputs found
Are women satisfied when using levonorgestrel-releasing intrauterine system for treatment of abnormal uterine bleeding?
Aim: To determine the efficacy of levonorgestrel intrauterine system (LNG IUS) in treatment of abnormal uterine bleeding (AUB) in women over 35 years and to determine satisfaction of users of LNG IUS in case of AUB.
Materials and Methods: This was a multicentric, retrospective, and observational study. Case records of patients with AUB from the hospitals in Pune, Delhi, and Gurgaon for the last 6 years were examined. Records of 80 women who had an LNG IUS inserted were included. The chief complaints and their duration were recorded. Investigation results, histopathology reports, and date of LNG IUS insertion were noted. The incidence of spotting, heavy menstrual bleeding, pain, expulsion, and amenorrhea were recorded at 3, 6, 12, and 18 months following treatment. Following this a telephonic interview was conducted to determine the efficacy of LNG IUS in treating the symptoms. Patients′ satisfaction in percentage was also noted and they were asked if they would recommend the LNG IUS to other women.
Results: The mean age of women was 42.3 years. 77.5% of the women had menorrhagia as the chief complaint, and the mean duration was 12 months. Fibroids and adenomyosis were the most common pathology, present in 21.3% and 20% of the patients respectively. At 3 months, spotting seemed to be the predominant symptom (59.4%) and only 15% women had heavy bleeding. 49.3% of women were asymptomatic at 6 months. 27.5% had amenorrhea by the end of 18 months. 14 women in whom the device was expelled or removed due to persistent symptoms, underwent hysterectomy at various stages during the study period. Overall patient satisfaction was high at about 80%. Furthermore, 73.8% patients agreed to recommend it to other women.
Conclusion: LNG IUS seems to be a viable and effective treatment option for AUB in women after 35 years. There is a high rate of patient satisfaction in appropriately selected patients
Exclusion of Gastrointestinal Cancer Patients With Prior Cancer From Clinical Trials: Is This Justified?
BACKGROUND
Strict eligibility criteria are necessary to maintain patient safety and scientific validity in clinical trials. However, this may lead to impaired generalizability of results. As survival in gastrointestinal (GI) cancer relates mainly to the GI malignancy, we hypothesized that previous cancers do not impact on survival and are not a rational exclusion criterion.
MATERIALS AND METHODS
Patients treated with chemotherapy for a GI cancer in 2006 were identified from the electronic patient record at the Royal Marsden Hospital, London. Chart review was performed and patient age, gender, GI cancer stage, prior cancer stage, clinical trial availability/eligibility, and dates of cancer recurrence, death, and last follow-up were collated.
RESULTS
A total of 697 patients were identified. Fifty-four patients (8%) had a prior cancer; commonly breast (26%), prostate (17%), or colon (9%); most were stage I (42%) or II (37%). Two hundred ninety-seven (65%) patients had GI cancer recurrence, 7 (12%) patients had relapse of a prior cancer. Five hundred four (72%) patients have died, 170 (24%) are alive with no cancer, and 23 (3%) patients are alive with cancer. A total of 476 (94%) died of GI cancer, 2 (0.3%) of their prior cancer. Of all patients, 489 (70%) had an available trial, but 30% of patients with a prior cancer were ineligible for this reason. Overall and GI-cancer-specific survival were comparable for patients with/without a prior cancer.
CONCLUSIONS
Survival for patients with a GI cancer requiring chemotherapy relates to the GI cancer and rarely a prior cancer. These patients should not be excluded from clinical trial participation
Detecting and Tracking Circulating Tumour DNA Copy Number Profiles during First Line Chemotherapy in Oesophagogastric Adenocarcinoma
DNA somatic copy number aberrations (SCNAs) are key drivers in oesophagogastric adenocarcinoma (OGA). Whether minimally invasive SCNA analysis of circulating tumour (ct)DNA can predict treatment outcomes and reveal how SCNAs evolve during chemotherapy is unknown. We investigated this by low-coverage whole genome sequencing (lcWGS) of ctDNA from 30 patients with advanced OGA prior to first-line chemotherapy and on progression. SCNA profiles were detectable pretreatment in 23/30 (76.7%) patients. The presence of liver metastases, primary tumour in situ, or of oesophageal or junctional tumour location predicted for a high ctDNA fraction. A low ctDNA concentration associated with significantly longer overall survival. Neither chromosomal instability metrics nor ploidy correlated with chemotherapy outcome. Chromosome 2q and 8p gains before treatment were associated with chemotherapy responses. lcWGS identified all amplifications found by prior targeted tumour tissue sequencing in cases with detectable ctDNA as well as finding additional changes. SCNA profiles changed during chemotherapy, indicating that cancer cell populations evolved during treatment; however, no recurrent SCNA changes were acquired at progression. Tracking the evolution of OGA cancer cell populations in ctDNA is feasible during chemotherapy. The observation of genetic evolution warrants investigation in larger series and with higher resolution techniques to reveal potential genetic predictors of response and drivers of chemotherapy resistance. The presence of liver metastasis is a potential biomarker for the selection of patients with high ctDNA content for such studies
Ultra-sensitive mutation detection and genome-wide DNA copy number reconstruction by error corrected circulating tumour DNA sequencing
Abstract Minimally invasive circulating free DNA (cfDNA) analysis can portray cancer genome landscapes but highly sensitive and specific genetic approaches are necessary to accurately detect mutations with often low variant frequencies. We developed a targeted cfDNA sequencing technology using novel off-the-shelf molecular barcodes for error correction, in combination with custom solution hybrid capture enrichment. Modelling based on cfDNA yields from 58 patients shows that our assay, which requires 25ng of cfDNA input, should be applicable to >95% of patients with metastatic colorectal cancer. Sequencing of a 163.3 kb target region including 32 genes detected 100% of single nucleotide variants with 0.15% variant frequency in cfDNA spike-in experiments. Molecular barcode error correction reduced false positive mutation calls by 98.6%. In a series of 28 patients with metastatic colorectal cancers, 80 out of 91 (88%) mutations previously detected by tumour tissue sequencing were called in the cfDNA. Call rates were similar for single nucleotide variants and small insertions/deletions. Mutations only called in cfDNA but not detectable in matched tumour tissue included, among others, a subclonal resistance driver mutation to anti-EGFR antibodies in the KRAS gene, multiple activating PIK3CA mutations in each of two patients (indicative of parallel evolution), and TP53 mutations originating from clonal haematopoiesis. Furthermore, we demonstrate that cfDNA off-target read analysis allows the reconstruction of genome wide copy number aberration profiles from 71% of these 28 cases. This error-corrected ultra-deep cfDNA sequencing assay with a target region that can be readily customized enables broad insights into cancer genomes and evolution
Genomic and Transcriptomic Determinants of Therapy Resistance and Immune Landscape Evolution during Anti-EGFR Treatment in Colorectal Cancer
Despite biomarker stratification, the anti-EGFR antibody cetuximab is only effective against a subgroup of colorectal cancers (CRCs). This genomic and transcriptomic analysis of the cetuximab resistance landscape in 35 RAS wild-type CRCs identified associations of NF1 and non-canonical RAS/RAF aberrations with primary resistance and validated transcriptomic CRC subtypes as non-genetic predictors of benefit. Sixty-four percent of biopsies with acquired resistance harbored no genetic resistance drivers. Most of these had switched from a cetuximab-sensitive transcriptomic subtype at baseline to a fibroblast- and growth factor-rich subtype at progression. Fibroblast-supernatant conferred cetuximab resistance in vitro, confirming a major role for non-genetic resistance through stromal remodeling. Cetuximab treatment increased cytotoxic immune infiltrates and PD-L1 and LAG3 immune checkpoint expression, potentially providing opportunities to treat cetuximab-resistant CRCs with immunotherapy.M.G., A.Woolston, L.J.B., and B.G. were supported by CRUK, a charitable donation from Tim Morgan, Cancer Genetics UK and the Constance Travis Trust. G.S. was funded by an Institute of Cancer PhD Studentship, R.G.E. by a Spanish Society of Medical Oncology (FSEOM) grant for Translational Research in Reference Centers. The study was also supported by the ICR/RMH NIHR Biomedical Research Center for Cancer, by the CRUK Immunotherapy Accelerator (ICR/RMH, UCL) and by a Wellcome Trust Strategic Grant (105104/Z/14/Z)