1,969 research outputs found

    A model universe with variable dimension: Expansion as decrumpling

    Get PDF
    We propose a model universe, in which the dimension of the space is a continuous variable, which can take any real positive number. The dynamics leads to a model in which the universe has no singularity. The difference between our model and the standard Friedman-Robertson-Walker models become effective for times much before the presently accepted age of the universe.Comment: 12 pages, emTeX version 3.0, no figure

    Holographic Thermodynamic on the Brane in Topological Reissner-Nordstr\"om de Sitter Space

    Get PDF
    We consider the brane universe in the bulk background of the topological Reissner-Nordstr\"om de Sitter black holes. We show that the thermodynamic quantities (including entropy) of the dual CFT take usual special forms expressed in terms of Hubble parameter and its time derivative at the moment, when the brane crosses the black hole horizon or the cosmological horizon. We obtain the generalized Cardy-Verlinde formula for the CFT with an charge and cosmological constant, for any values of the curvature parameter kk in the Friedmann equations.Comment: 8 page

    Equivalence of Darmois-Israel and Distributional-Methods for Thin Shells in General Relativity

    Get PDF
    A distributional method to solve the Einstein's field equations for thin shells is formulated. The familiar field equations and jump conditions of Darmois-Israel formalism are derived. A carefull analysis of the Bianchi identities shows that, for cases under consideration, they make sense as distributions and lead to jump conditions of Darmois-Israel formalism.Comment: 17 pages Latex, no figures, to be published in Journ. Math. Phy

    Quantum Tests of the Foundations of General Relativity

    Get PDF
    The role of the equivalence principle in the context of non-relativistic quantum mechanics and matter wave interferometry, especially atom beam interferometry, will be discussed. A generalised form of the weak equivalence principle which is capable of covering quantum phenomena too, will be proposed. It is shown that this generalised equivalence principle is valid for matter wave interferometry and for the dynamics of expectation values. In addition, the use of this equivalence principle makes it possible to determine the structure of the interaction of quantum systems with gravitational and inertial fields. It is also shown that the path of the mean value of the position operator in the case of gravitational interaction does fulfill this generalised equivalence principle.Comment: Classical and Quantum Gravity 15, 13 (1998

    E-Learning for Teachers and Trainers : Innovative Practices, Skills and Competences

    Get PDF
    Reproduction is authorised provided the source is acknowledged.Final Published versio

    Tests of relativity using a microwave resonator

    Get PDF
    The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are compared to set new constraints on a possible violation of Lorentz invariance. We determine the variation of the oscillator frequency as a function of its orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike test) with respect to a preferred frame candidate. We constrain the corresponding parameters of the Mansouri and Sexl test theory to ή−ÎČ+1/2=(1.5±4.2)×10−9\delta - \beta + 1/2 = (1.5\pm 4.2) \times 10^{-9} and ÎČ−α−1=(−3.1±6.9)×10−7\beta - \alpha - 1 = (-3.1\pm 6.9) \times 10^{-7} which is equivalent to the best previous result for the former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3, 2002

    Matching LTB and FRW spacetimes through a null hypersurface

    Get PDF
    Matching of a LTB metric representing dust matter to a background FRW universe across a null hypersurface is studied. In general, an unrestricted matching is possible only if the background FRW is flat or open. There is in general no gravitational impulsive wave present on the null hypersurface which is shear-free and expanding. Special cases of the vanishing pressure or energy density on the hypersurface is discussed. In the case of vanishing energy momentum tensor of the null hypersurface, i.e. in the case of a null boundary, it turns out that all possible definitions of the Hubble parameter on the null hypersurface, being those of LTB or that of FRW, are equivalent, and that a flat FRW can only be joined smoothly to a flat LTB.Comment: 9 page

    Limits on the Time Evolution of Space Dimensions from Newton's Constant

    Full text link
    Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not been included the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10^{-14}yr^{-1}. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present-day variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was at the Planck scale to be less than or equal to 3.09. If the dimension of space when the Universe was at the Planck scale is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.Comment: 22 pages, accepted for publication in Int.J.Mod.Phys.
    • 

    corecore