The role of the equivalence principle in the context of non-relativistic
quantum mechanics and matter wave interferometry, especially atom beam
interferometry, will be discussed. A generalised form of the weak equivalence
principle which is capable of covering quantum phenomena too, will be proposed.
It is shown that this generalised equivalence principle is valid for matter
wave interferometry and for the dynamics of expectation values. In addition,
the use of this equivalence principle makes it possible to determine the
structure of the interaction of quantum systems with gravitational and inertial
fields. It is also shown that the path of the mean value of the position
operator in the case of gravitational interaction does fulfill this generalised
equivalence principle.Comment: Classical and Quantum Gravity 15, 13 (1998