6,116 research outputs found
On including quality in applied automatic gait recognition
Many gait recognition approaches use silhouette data. Imperfections in silhouette extraction have a negative effect on the performance of a gait recognition system. In this paper we extend quality metrics for gait recognition and evaluate new ways of using quality to improve a recognition system. We demonstrate use of quality to improve silhouette data and select gait cycles of best quality. The potential of the new approaches has been demonstrated experimentally on a challenging dataset, showing how recognition capability can be dramatically improved. Our practical study also shows that acquiring samples of adequate quality in arbitrary environments is difficult and that including quality analysis can improve performance markedly
Curvature condensation and bifurcation in an elastic shell
We study the formation and evolution of localized geometrical defects in an
indented cylindrical elastic shell using a combination of experiment and
numerical simulation. We find that as a symmetric localized indentation on a
semi-cylindrical shell increases, there is a transition from a global mode of
deformation to a localized one which leads to the condensation of curvature
along a symmetric parabolic crease. This process introduces a soft mode in the
system, converting a load-bearing structure into a hinged, kinematic mechanism.
Further indentation leads to twinning wherein the parabolic crease bifurcates
into two creases that move apart on either side of the line of symmetry. A
qualitative theory captures the main features of the phenomena and leads to
sharper questions about the nucleation of these defects.Comment: 4 pages, 5 figures, submitted to Physical Review Letter
The engagement of further and higher education with the London 2012 Olympic and Paralympic Games
Podium commissioned the Centre for Sport, Physical Education & Activity Research (SPEAR) at Canterbury Christ Church University to carry out research to capture the engagement of the further and higher education sectors and related stakeholders with the past, current and future opportunities presented by the London 2012 Olympic and Paralympic Games. The full report was released on 15 March 2011 to mark 500 days to go until the start of London 2012
The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects
We measure the Casimir force between a gold sphere and a silicon plate with
nanoscale, rectangular corrugations with depth comparable to the separation
between the surfaces. In the proximity force approximation (PFA), both the top
and bottom surfaces of the corrugations contribute to the force, leading to a
distance dependence that is distinct from a flat surface. The measured Casimir
force is found to deviate from the PFA by up to 15%, in good agreement with
calculations based on scattering theory that includes both geometry effects and
the optical properties of the material
Neutron, electron and X-ray scattering investigation of Cr1-xVx near Quantum Criticality
The weakness of electron-electron correlations in the itinerant
antiferromagnet Cr doped with V has long been considered the reason that
neither new collective electronic states or even non Fermi liquid behaviour are
observed when antiferromagnetism in CrV is suppressed to zero
temperature. We present the results of neutron and electron diffraction
measurements of several lightly doped single crystals of CrV in
which the archtypal spin density wave instability is progressively suppressed
as the V content increases, freeing the nesting-prone Fermi surface for a new
striped charge instability that occurs at x=0.037. This novel nesting
driven instability relieves the entropy accumulation associated with the
suppression of the spin density wave and avoids the formation of a quantum
critical point by stabilising a new type of charge order at temperatures in
excess of 400 K. Restructuring of the Fermi surface near quantum critical
points is a feature found in materials as diverse as heavy fermions, high
temperature copper oxide superconductors and now even elemental metals such as
Cr.Comment: 6 pages, 6 figures. Accepted to Physical Review
A TaqMan qPCR method for detecting kdr resistance in Aphis gossypii demonstrates improved sensitivity compared to conventional PCR–RFLP
© 2015, Springer-Verlag Berlin Heidelberg. Cotton aphid, Aphis gossypii Glover, has emerged as a prominent pest in Australian cotton production, and monitoring pesticide resistance including pyrethroids in field populations is crucial for its sustainable management. We examined the distribution of kdr resistance in 35 field-collected A. gossypii populations and used TaqMan qPCR assays with pooled samples. The study demonstrated proof of concept that pooled insect qPCR methodology provided effective detection with better sensitivity than individual PCR–RFLP genotyping techniques for the kdr resistance allele. The practical outcome is that routine resistance monitoring can examine more sites while increasing the likelihood of detecting incipient resistance at those sites. More importantly, the method is adaptable to any genetically caused resistance and so not limited to A. gossypii or even insect control. It cannot be overstressed that the ability to detected resistance at very low frequencies is critical to all sustainable resistance management. Early detection of resistance provides critical time for the modification of chemical use prior to potential insecticide control failure
Reconstruction Mechanism of FCC Transition-Metal (001) Surfaces
The reconstruction mechanism of (001) fcc transition metal surfaces is
investigated using a full-potential all-electron electronic structure method
within density-functional theory. Total-energy supercell calculations confirm
the experimental finding that a close-packed quasi-hexagonal overlayer
reconstruction is possible for the late 5-metals Ir, Pt, and Au, while it is
disfavoured in the isovalent 4 metals (Rh, Pd, Ag). The reconstructive
behaviour is driven by the tensile surface stress of the unreconstructed
surfaces; the stress is significantly larger in the 5 metals than in 4
ones, and only in the former case it overcomes the substrate resistance to the
required geometric rearrangement. It is shown that the surface stress for these
systems is due to charge depletion from the surface layer, and that the
cause of the 4th-to-5th row stress difference is the importance of relativistic
effects in the 5 series.Comment: RevTeX 3.0, 12 pages, 1 PostScript figure available upon request] 23
May 199
- …