904 research outputs found

    Study program for encapsulation materials interface for low-cost solar array

    Get PDF
    The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces

    tert-Butyl­dimethyl­silanol hemihydrate

    Get PDF
    The crystal structure of the title compound, C6H16OSi·0.5H2O, reveals an asymmetric unit containing two mol­ecules of the silanol and a single water mol­ecule. There is evidence of hydrogen bonding between the three mol­ecules in the asymmetric unit. The H atoms of the silanol OH groups and the water H atoms are each disordered equally over two positions

    Polyethylene glycol as shape and size controller for the hydrothermal synthesis of SrTiO3 cubes and polyhedra

    Get PDF
    Understanding the correlation between the morphological and functional properties of particulate materials is crucial across all fields of physical and natural sciences. This manuscript reports on the investigation of the effect of polyethylene glycol (PEG) employed as a capping agent in the synthesis of SrTiO3 crystals. The crucial influence of PEG on both the shape and size of the strontium titanate particles is revealed, highlighting the effect on the photocurrents measured under UV–Vis irradiation

    Efficient and gentle delivery of molecules into cells with different elasticity via Progressive Mechanoporation

    Get PDF
    Intracellular delivery of cargo molecules such as membrane-impermeable proteins or drugs is crucial for cell treatment in biological and medical applications. Recently, microfluidic mechanoporation techniques have enabled transfection of previously inaccessible cells. These techniques create transient pores in the cell membrane by shear-induced or constriction contact-based rapid cell deformation. However, cells deform and recover differently from a given extent of shear stress or compression and it is unclear how the underlying mechanical properties affect the delivery efficiency of molecules into cells. In this study, we identify cell elasticity as a key mechanical determinant of delivery efficiency leading to the development of “progressive mechanoporation” (PM), a novel mechanoporation method that improves delivery efficiency into cells of different elasticity. PM is based on a multistage cell deformation, through a combination of hydrodynamic forces that pre-deform cells followed by their contact-based compression inside a PDMS-based device controlled by a pressure-based microfluidic controller. PM allows processing of small sample volumes (about 20 μL) with high-throughput (>10 000 cells per s), while controlling both operating pressure and flow rate for a reliable and reproducible cell treatment. We find that uptake of molecules of different sizes is correlated with cell elasticity whereby delivery efficiency of small and big molecules is favoured in more compliant and stiffer cells, respectively. A possible explanation for this opposite trend is a different size, number and lifetime of opened pores. Our data demonstrates that PM reliably and reproducibly delivers impermeable cargo of the size of small molecule inhibitors such as 4 kDa FITC-dextran with >90% efficiency into cells of different mechanical properties without affecting their viability and proliferation rates. Importantly, also much larger cargos such as a >190 kDa Cas9 protein–sgRNA complex are efficiently delivered high-lighting the biological, biomedical and clinical applicability of our findings

    Development, Citizenship, and Everyday Appropriations of Buen Vivir: Ecuadorian Engagement with the Changing Rhetoric of Improvement

    Get PDF
    The Ecuadorian state frames its development interventions in infrastructure and human capital as advances in buen vivir or ‘good living’. This paper reports ethnographic research that draws attention to everyday appropriations of state discourses on buen vivir in the Amazon and Andes. Non-state actors in marginalised communities often use state discourses strategically in engagements and negotiations with state actors. We argue that uses of official versions of buen vivir discourse often reflect such strategic appropriations of state idioms, rather than subjective commitment to state-led development and official notions of buen vivir

    Efficient and gentle delivery of molecules into cells with different elasticity via Progressive Mechanoporation.

    Get PDF
    Intracellular delivery of cargo molecules such as membrane-impermeable proteins or drugs is crucial for cell treatment in biological and medical applications. Recently, microfluidic mechanoporation techniques have enabled transfection of previously inaccessible cells. These techniques create transient pores in the cell membrane by shear-induced or constriction contact-based rapid cell deformation. However, cells deform and recover differently from a given extent of shear stress or compression and it is unclear how the underlying mechanical properties affect the delivery efficiency of molecules into cells. In this study, we identify cell elasticity as a key mechanical determinant of delivery efficiency leading to the development of "progressive mechanoporation" (PM), a novel mechanoporation method that improves delivery efficiency into cells of different elasticity. PM is based on a multistage cell deformation, through a combination of hydrodynamic forces that pre-deform cells followed by their contact-based compression inside a PDMS-based device controlled by a pressure-based microfluidic controller. PM allows processing of small sample volumes (about 20 μL) with high-throughput (>10 000 cells per s), while controlling both operating pressure and flow rate for a reliable and reproducible cell treatment. We find that uptake of molecules of different sizes is correlated with cell elasticity whereby delivery efficiency of small and big molecules is favoured in more compliant and stiffer cells, respectively. A possible explanation for this opposite trend is a different size, number and lifetime of opened pores. Our data demonstrates that PM reliably and reproducibly delivers impermeable cargo of the size of small molecule inhibitors such as 4 kDa FITC-dextran with >90% efficiency into cells of different mechanical properties without affecting their viability and proliferation rates. Importantly, also much larger cargos such as a >190 kDa Cas9 protein-sgRNA complex are efficiently delivered high-lighting the biological, biomedical and clinical applicability of our findings

    Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted cryptic targeting sequence at the N-terminus.

    Get PDF
    Aurora A kinase (AURKA) is a major regulator of mitosis and an important driver of cancer progression. The roles of AURKA outside of mitosis, and how these might contribute to cancer progression, are not well understood. Here, we show that a fraction of cytoplasmic AURKA is associated with mitochondria, co-fractionating in cell extracts and interacting with mitochondrial proteins by reciprocal co-immunoprecipitation. We have also found that the dynamics of the mitochondrial network are sensitive to AURKA inhibition, depletion or overexpression. This can account for the different mitochondrial morphologies observed in RPE-1 and U2OS cell lines, which show very different levels of expression of AURKA. We identify the mitochondrial fraction of AURKA as influencing mitochondrial morphology, because an N-terminally truncated version of the kinase that does not localize to mitochondria does not affect the mitochondrial network. We identify a cryptic mitochondrial targeting sequence in the AURKA N-terminus and discuss how alternative conformations of the protein may influence its cytoplasmic fate.MRC CRU

    Active immunisation of mice with GnRH lipopeptide vaccine candidates: importance of T helper or multi-dimer GnRH epitope

    Get PDF
    Active immunisation against gonadotropin releasing hormone (GnRH) is a potential alternative to surgical castration. This study focused on the development of a GnRH subunit lipopeptide vaccine. A library of vaccine candidates that contained one or more (up to eight) copies of monomeric or dimeric GnRH peptide antigen, an adjuvanting lipidic moiety based on lipoamino acids, and an additional T helper epitope, was synthesised by solid phase peptide synthesis. The candidates were evaluated in vivo in order to determine the minimal components of this vaccine necessary to induce a systemic immune response. BALB/c mice were immunised with GnRH lipopeptide conjugates, co-administered with or without Complete Freund's Adjuvant, followed by two additional immunisations. Significant GnRH-specific IgG titres were detected in sera obtained from mice immunised with four of the seven lipopeptides tested, with an increase in titres observed after successive immunisations. This study highlights the importance of for epitope optimisation and delivery system design when producing anti-hapten antibodies in vivo. The results of this study also contribute to the development of future clinical and veterinary immunocontraceptives
    corecore