329 research outputs found

    BPS invariants of N = 4 gauge theory on Hirzebruch surfaces

    No full text
    Abstract. Generating functions of BPS invariants forN = 4 U(r) gauge theory on a Hirze-bruch surface with r ≤ 3 are computed. The BPS invariants provide the Betti numbers of moduli spaces of semi-stable sheaves. The generating functions for r = 2 are expressed in terms of higher level Appell functions for a certain polarization of the surface. The level corresponds to the self-intersection of the base curve of the Hirzebruch surface. The non-holomorphic functions are determined, which added to the holomorphic generating functions provide functions which transform as a modular form. 1

    Partition functions for supersymmetric black holes

    Get PDF

    Evidence for Duality of Conifold from Fundamental String

    Full text link
    We study the spectrum of BPS D5-D3-F1 states in type IIB theory, which are proposed to be dual to D4-D2-D0 states on the resolved conifold in type IIA theory. We evaluate the BPS partition functions for all values of the moduli parameter in the type IIB side, and find them completely agree with the results in the type IIA side which was obtained by using Kontsevich-Soibelman's wall-crossing formula. Our result is a quite strong evidence for string dualities on the conifold.Comment: 24 pages, 13 figures, v2: typos corrected, v3: explanations about wall-crossing improved and figures adde

    D3-instantons, Mock Theta Series and Twistors

    Get PDF
    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2,Z). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2,Z) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.Comment: 42 pages; discussion of isometries is amended; misprints correcte

    BPS Spectrum, Indices and Wall Crossing in N=4 Supersymmetric Yang-Mills Theories

    Full text link
    BPS states in N=4 supersymmetric SU(N) gauge theories in four dimensions can be represented as planar string networks with ends lying on D3-branes. We introduce several protected indices which capture information on the spectrum and various quantum numbers of these states, give their wall crossing formula and describe how using the wall crossing formula we can compute all the indices at all points in the moduli space.Comment: LaTeX file, 33 pages, 15 figure

    AdS_3 Partition Functions Reconstructed

    Full text link
    For pure gravity in AdS_3, Witten has given a recipe for the construction of holomorphically factorizable partition functions of pure gravity theories with central charge c=24k. The partition function was found to be a polynomial in the modular invariant j-function. We show that the partition function can be obtained instead as a modular sum which has a more physical interpretation as a sum over geometries. We express both the j-function and its derivative in terms of such a sum.Comment: 9 page

    Wall-Crossing from Boltzmann Black Hole Halos

    Get PDF
    A key question in the study of N=2 supersymmetric string or field theories is to understand the decay of BPS bound states across walls of marginal stability in the space of parameters or vacua. By representing the potentially unstable bound states as multi-centered black hole solutions in N=2 supergravity, we provide two fully general and explicit formulae for the change in the (refined) index across the wall. The first, "Higgs branch" formula relies on Reineke's results for invariants of quivers without oriented loops, specialized to the Abelian case. The second, "Coulomb branch" formula results from evaluating the symplectic volume of the classical phase space of multi-centered solutions by localization. We provide extensive evidence that these new formulae agree with each other and with the mathematical results of Kontsevich and Soibelman (KS) and Joyce and Song (JS). The main physical insight behind our results is that the Bose-Fermi statistics of individual black holes participating in the bound state can be traded for Maxwell-Boltzmann statistics, provided the (integer) index \Omega(\gamma) of the internal degrees of freedom carried by each black hole is replaced by an effective (rational) index \bar\Omega(\gamma)= \sum_{m|\gamma} \Omega(\gamma/m)/m^2. A similar map also exists for the refined index. This observation provides a physical rationale for the appearance of the rational Donaldson-Thomas invariant \bar\Omega(\gamma) in the works of KS and JS. The simplicity of the wall crossing formula for rational invariants allows us to generalize the "semi-primitive wall-crossing formula" to arbitrary decays of the type \gamma\to M\gamma_1+N\gamma_2 with M=2,3.Comment: 71 pages, 1 figure; v3: changed normalisation of symplectic form 3.22, corrected 3.35, other cosmetic change

    Block-Goettsche invariants from wall-crossing

    Get PDF
    We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined

    BPS States, Refined Indices, and Quiver Invariants

    Full text link
    For D=4 BPS state construction, counting, and wall-crossing thereof, quiver quantum mechanics offers two alternative approaches, the Coulomb phase and the Higgs phase, which sometimes produce inequivalent counting. The authors have proposed, in arXiv:1205.6511, two conjectures on the precise relationship between the two, with some supporting evidences. Higgs phase ground states are naturally divided into the Intrinsic Higgs sector, which is insensitive to wall-crossings and thus an invariant of quiver, plus a pulled-back ambient cohomology, conjectured to be an one-to-one image of Coulomb phase ground states. In this note, we show that these conjectures hold for all cyclic quivers with Abelian nodes, and further explore angular momentum and R-charge content of individual states. Along the way, we clarify how the protected spin character of BPS states should be computed in the Higgs phase, and further determine the entire Hodge structure of the Higgs phase cohomology. This shows that, while the Coulomb phase states are classified by angular momentum, the Intrinsic Higgs states are classified by R-symmetry.Comment: 51 pages, 5 figure
    • …
    corecore