18 research outputs found

    Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes

    Get PDF
    © 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes

    Genomic Profiling of Advanced-Stage Oral Cancers Reveals Chromosome 11q Alterations as Markers of Poor Clinical Outcome

    Get PDF
    Identifying oral cancer lesions associated with high risk of relapse and predicting clinical outcome remain challenging questions in clinical practice. Genomic alterations may add prognostic information and indicate biological aggressiveness thereby emphasizing the need for genome-wide profiling of oral cancers. High-resolution array comparative genomic hybridization was performed to delineate the genomic alterations in clinically annotated primary gingivo-buccal complex and tongue cancers (n = 60). The specific genomic alterations so identified were evaluated for their potential clinical relevance. Copy-number changes were observed on chromosomal arms with most frequent gains on 3q (60%), 5p (50%), 7p (50%), 8q (73%), 11q13 (47%), 14q11.2 (47%), and 19p13.3 (58%) and losses on 3p14.2 (55%) and 8p (83%). Univariate statistical analysis with correction for multiple testing revealed chromosomal gain of region 11q22.1–q22.2 and losses of 17p13.3 and 11q23–q25 to be associated with loco-regional recurrence (P = 0.004, P = 0.003, and P = 0.0003) and shorter survival (P = 0.009, P = 0.003, and P 0.0001) respectively. The gain of 11q22 and loss of 11q23-q25 were validated by interphase fluorescent in situ hybridization (I-FISH). This study identifies a tractable number of genomic alterations with few underlying genes that may potentially be utilized as biological markers for prognosis and treatment decisions in oral cancers

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Custom anatomic healing abutments

    No full text
    Dental implants with their increasing success rates and predictability of final outcome are fast becoming the treatment of choice for replacing missing teeth. Considering the success of immediate implant placement in reducing tissue loss and achieving good esthetic results, is making it a more popular treatment modality in implant dentistry. Understanding the management of gingival tissues in relation to implants to obtain maximum esthetics is of utmost importance. The use of provisional abutments and immediate temporization has a proven track record of their ability to produce optimal esthetics and to guide the tissue response during the healing phase. With careful patient selection and execution, customized healing abutments can provide an effective method to enhance the esthetic and emergence profile for anterior implant restorations

    Epidemiology of Congenital Rubella Syndrome (CRS) in India, 2016-18, based on data from sentinel surveillance.

    No full text
    BACKGROUND:Government of India is committed to eliminate measles and control rubella/congenital rubella syndrome (CRS) by 2020. In 2016, CRS surveillance was established in five sentinel sites. We analyzed surveillance data to describe the epidemiology of CRS in India. METHODOLOGY/PRINCIPAL FINDINGS:We used case definitions adapted from the WHO-recommended standards for CRS surveillance. Suspected patients underwent complete clinical examination including cardiovascular system, ophthalmic examination and assessment for hearing impairment. Sera were tested for presence of IgM and IgG antibodies against rubella. Of the 645 suspected CRS patients enrolled during two years, 137 (21.2%) were classified as laboratory confirmed CRS and 8 (1.2%) as congenital rubella infection. The median age of laboratory confirmed CRS infants was 3 months. Common clinical features among laboratory confirmed CRS patients included structural heart defects in 108 (78.8%), one or more eye signs (cataract, glaucoma, pigmentary retinopathy) in 82 (59.9%) and hearing impairment in 51. (38.6%) Thirty-three (24.1%) laboratory confirmed CRS patients died over a period of 2 years. Surveillance met the quality indicators in terms of adequacy of investigation, adequacy of sample collection for serological diagnosis as well as virological confirmation. CONCLUSIONS/SIGNIFICANCE:About one fifth suspected CRS patients were laboratory confirmed, indicating significance of rubella as a persistent public health problem in India. Continued surveillance will generate data to monitor the progress made by the rubella control program in the country
    corecore