96 research outputs found
Winter aerosol and trace gas characteristics over a high-altitude station in the Western Ghats, India
This paper presents spectral distribution of aerosol optical depth (and derived size distribution), water vapor and ozone in total atmospheric column; in conjunction with particulate mass concentration in the size range from 0.3 to 20 μm and black carbon mass concentration at the surface-level during four different campaigns, conducted in months of December-January-2006-2007 (Campaign I), February-2007 (Campaign II), January-2008 (Campaign III) and November-2008 (Campaign IV) at a high-altitude station, Sinhgad (18°22'N, 73°45'E, 1450 m AMSL) in the Western Ghats of Indian Peninsula. Aerosol optical depth (AOD) measured within the spectral range 440-1020 nm is found lower as compared to that measured over a nearby urban station, Pune; but relatively higher than that over other remote high-altitude stations in India. The columnar Angstrom exponent derived within the 440-870 nm spectral range showed maximum values close to 1 indicating relatively higher contribution from fine-mode particles to aerosol size spectrum. Interestingly, this parameter shows lower values when the total aerosol mass concentration exhibits higher values during afternoon hours. Both columnar water vapor (CWV) and ozone (TCO) exhibit lower values in the morning hours and higher in the afternoon hours. The mass concentration of black carbon shows an association with AOD during the study period over the station. The measured surface aerosol particle number concentrations are used to reconstruct AOD spectra using the Optical Properties of Aerosols and Clouds (OPAC) software package and compared with simultaneously available columnar AOD spectra
Radiative forcing of black carbon over Delhi
The radiative effects of black carbon (BC) aerosols over New Delhi, the capital city of India, for the period August 2010–July 2011, have been investigated using Santa Barbara DISTORT Atmospheric Radiative Transfer (SBDART) model in the present paper. The monthly mean BC concentrations in Delhi, an urban location, vary in between 15.935 ± 2.06 μg m−3 (December 2010)–2.44 ± 0.58 μg m−3 (July 2011). The highest value for monthly mean BC forcing has been found to be in November 2010 (66.10 ± 6.86 Wm−2) and the lowest in July 2011 (23 ± 3.89 Wm−2). Being the host city for the XIX Commonwealth Games (CWG-2010), government of Delhi set up a plan to reduce emissions of air pollutants during Games, from 03 October to 14 October, 2010. But opposite to the expectations, the emission controls implemented were not sufficient to reduce the pollutants like black carbon (BC), and therefore relatively a high value of BC radiative forcing (44.36 ± 2.4) was observed during the month of October 201
Observed Reductions in Schistosoma mansoni Transmission from Large-Scale Administration of Praziquantel in Uganda: A Mathematical Modelling Study
To date schistosomiasis control programmes based on chemotherapy have largely aimed at controlling morbidity in treated individuals rather than at suppressing transmission. In this study, a mathematical modelling approach was used to estimate reductions in the rate of Schistosoma mansoni reinfection following annual mass drug administration (MDA) with praziquantel in Uganda over four years (2003-2006). In doing this we aim to elucidate the benefits of MDA in reducing community transmission.Age-structured models were fitted to a longitudinal cohort followed up across successive rounds of annual treatment for four years (Baseline: 2003, TREATMENT: 2004-2006; n = 1,764). Instead of modelling contamination, infection and immunity processes separately, these functions were combined in order to estimate a composite force of infection (FOI), i.e., the rate of parasite acquisition by hosts.MDA achieved substantial and statistically significant reductions in the FOI following one round of treatment in areas of low baseline infection intensity, and following two rounds in areas with high and medium intensities. In all areas, the FOI remained suppressed following a third round of treatment.This study represents one of the first attempts to monitor reductions in the FOI within a large-scale MDA schistosomiasis morbidity control programme in sub-Saharan Africa. The results indicate that the Schistosomiasis Control Initiative, as a model for other MDA programmes, is likely exerting a significant ancillary impact on reducing transmission within the community, and may provide health benefits to those who do not receive treatment. The results obtained will have implications for evaluating the cost-effectiveness of schistosomiasis control programmes and the design of monitoring and evaluation approaches in general
Different atmospheric moisture divergence responses to extreme and moderate El Niños
On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST
tropiTree:an NGS-based EST-SSR resource for 24 tropical tree species
The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data
A Research Agenda for Helminth Diseases of Humans: Modelling for Control and Elimination
Mathematical modelling of helminth infections has the potential to inform policy and guide research for the control and elimination of human helminthiases. However, this potential, unlike in other parasitic and infectious diseases, has yet to be realised. To place contemporary efforts in a historical context, a summary of the development of mathematical models for helminthiases is presented. These efforts are discussed according to the role that models can play in furthering our understanding of parasite population biology and transmission dynamics, and the effect on such dynamics of control interventions, as well as in enabling estimation of directly unobservable parameters, exploration of transmission breakpoints, and investigation of evolutionary outcomes of control. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A research and development agenda for helminthiasis modelling is proposed based on identified gaps that need to be addressed for models to become useful decision tools that can support research and control operations effectively. This agenda includes the use of models to estimate the impact of large-scale interventions on infection incidence; the design of sampling protocols for the monitoring and evaluation of integrated control programmes; the modelling of co-infections; the investigation of the dynamical relationship between infection and morbidity indicators; the improvement of analytical methods for the quantification of anthelmintic efficacy and resistance; the determination of programme endpoints; the linking of dynamical helminth models with helminth geostatistical mapping; and the investigation of the impact of climate change on human helminthiases. It is concluded that modelling should be embedded in helminth research, and in the planning, evaluation, and surveillance of interventions from the outset. Modellers should be essential members of interdisciplinary teams, propitiating a continuous dialogue with end users and stakeholders to reflect public health needs in the terrain, discuss the scope and limitations of models, and update biological assumptions and model outputs regularly. It is highlighted that to reach these goals, a collaborative framework must be developed for the collation, annotation, and sharing of databases from large-scale anthelmintic control programmes, and that helminth modellers should join efforts to tackle key questions in helminth epidemiology and control through the sharing of such databases, and by using diverse, yet complementary, modelling approaches
Temporal Network Based Analysis of Cell Specific Vein Graft Transcriptome Defines Key Pathways and Hub Genes in Implantation Injury
Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC) and medial smooth muscle cells (SMC) from canine vein grafts, 2 hours (H) to 30 days (D) following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12–24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1) signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR) as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1), a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention
Multi-proxy evidence for an arid shift in the climate and vegetation of the Banni grasslands of western India during the mid- to late-Holocene
Tropical semi-arid grasslands are a widespread and ecologically and economically important terrestrial biome. Here, we use paleoecology to understand woodland–grassland transitions across the mid- to late-Holocene period in the Banni grassland, western India. Multi proxy analyses involving palynology, phytoliths and elemental geochemistry were carried out on two sediment cores retrieved from wetlands (Chachi and Luna), to understand temporal fluctuations in vegetation, moisture availability and other environmental parameters. Based on the results, the Chachi core was divided into two major climatic phases. Phase 1 (4600–2500 cal. yr BP) was characterised by high precipitation and abundance of pollen types and phytolith morphotypes that indicate the presence of woody savanna, and mesic herbaceous taxa. Phase 2 (2500 cal. yr BP to the present) was characterised by lower precipitation, lower abundance of mesic taxa and an increase in grass phytolith abundance. However, the period from ~1000 cal. yr BP to the present was characterised by the increased abundance of leguminous taxa, dryland herbs/shrubs and a decline in grass phytolith abundance. The Luna core (~1000 cal. yr BP to the present) also showed results matching with the Chachi core for this latter period. Overall, moisture availability in the ecosystem appears to have declined since 4600 cal. yr BP, and the vegetation has responded to this. Although the balance between tree, shrub and grass elements has fluctuated, overall, the region has remained as an open ‘grass and shrub savanna’ with sparse woody vegetation throughout this period. Our study provides insights into the vegetation dynamics and environmental settings in a poorly understood tropical arid-grassland ecosystem from Asia during the mid-late-Holocene
- …