31 research outputs found

    Development of Thin Gold Film Thermal Sensors for Synchrotron X-Ray Exposure Diagnostics.

    Get PDF
    High aspect ratio lithography utilizes high intensity exposure sources, such as synchrotron storage rings, to deposit sufficient dose in the resist to produce a successful pattern transfer. Such highly powerful sources are known to cause undesirable thermal effects in the mask-resist-substrate system. Hence, the measurement of temperature of a mask-resist-substrate system during irradiation is an important exposure diagnostic feature. Deposition of a reasonably accurate dose in the resist is controlled by knowledge of the exposure source intensity. Periodic monitoring of the synchrotron radiation beam power and its spatial distribution at the exposure plane is necessary. In this research, diagnostic techniques based on thin gold film thermal sensors are developed to measure mask-resist-substrate temperature during exposure, and to measure the magnitude and spatial distribution of exposure radiation power. The suitability of thin gold film thermal sensors for exposure diagnostics are demonstrated. Fabrication, calibration and performance characteristics of these sensors are presented. Results of the temperature rise on the top surface of PMMA and at the interface of the Si-PMMA resist-substrate system in vacuum and at different pressures of helium are presented. Relaxation time parameter under different exposure ambiance is determined. The thermal sensor measurement is compared with that of conventional J-type miniature thermocouples, and temperature measurements are compared with results of a numerical simulation performed using the finite difference heat transfer code, HEATING. A calorimeter, based on the interlaced thermal sensors, has been developed to perform synchrotron radiation beam power measurements. The concept of internal calibration, that combines calibration and measurement into a single operation, is explained. The advantage of this technique in terms of the ambiance independent, calibration-free performance and fast response time is demonstrated in comparison with conventional calorimeters. A procedure, based on an integral type measurement to obtain the spatial power distribution in the beam is explained. The results of beam power measurement and beam profile measurement at the XRLC1 and the XRLM3 beamlines are presented. An empirical relationship between the synchrotron electron beam current and the synchrotron radiation power is developed to serve as a quick reference during exposures

    On Development of 100-Gram-Class Spacecraft for Swarm Applications

    Get PDF
    A novel space system architecture is proposed, which would enable 100-g-class spacecraft to be flown as swarms (100 s-1000 s) in low Earth orbit. Swarms of Silicon Wafer Integrated Femtosatellites (SWIFT) present a paradigm-shifting approach to distributed spacecraft development, missions, and applications. Potential applications of SWIFT swarms include sparse aperture arrays and distributed sensor networks. New swarm array configurations are introduced and shown to achieve the effective sparse aperture driven from optical performance metrics. A system cost analysis based on this comparison justifies deploying a large number of femtosatellites for sparse aperture applications. Moreover, this paper discusses promising guidance, control, and navigation methods for swarms of femtosatellites equipped with modest sensing and control capabilities

    Endoscope and System and Method of Operation Thereof

    Get PDF
    An endoscope including a rigid section having opposed first and second ends and an opening situated between the first and second ends, the rigid section defining a longitudinal axis; a handle portion coupled to a first end of the rigid section and having first and second scissor-type handles suitable for grasping by a user; and a base part situated at the second end of the rigid section and coupled to the first handle of the scissor-type handles such that displacement of the first handle causes a rotation of the base part

    Multi-Directional Environmental Sensors

    Get PDF
    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device

    Method for Manufacturing a Carbon Nanotube Field Emission Device with Overhanging Gate

    Get PDF
    A carbon nanotube field emission device with overhanging gate fabricated by a double silicon-on-insulator process. Other embodiments are described and claimed

    Endoscope and System and Method of Operation Thereof

    Get PDF
    An endoscope including a rigid section having opposed first and second ends and an opening situated between the first and second ends, the rigid section defining a longitudinal axis; a handle portion coupled to a first end of the rigid section and having first and second scissor-type handles suitable for grasping by a user; and a base part situated at the second end of the rigid section and coupled to the first handle of the scissor-type handles such that displacement of the first handle causes a rotation of the base part

    On Development of 100-Gram-Class Spacecraft for Swarm Applications

    Get PDF
    A novel space system architecture is proposed, which would enable 100-g-class spacecraft to be flown as swarms (100 s-1000 s) in low Earth orbit. Swarms of Silicon Wafer Integrated Femtosatellites (SWIFT) present a paradigm-shifting approach to distributed spacecraft development, missions, and applications. Potential applications of SWIFT swarms include sparse aperture arrays and distributed sensor networks. New swarm array configurations are introduced and shown to achieve the effective sparse aperture driven from optical performance metrics. A system cost analysis based on this comparison justifies deploying a large number of femtosatellites for sparse aperture applications. Moreover, this paper discusses promising guidance, control, and navigation methods for swarms of femtosatellites equipped with modest sensing and control capabilities

    Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    Get PDF
    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights

    Low Power, Wide Dynamic Range Carbon Nanotube Vacuum Gauges

    No full text
    This slide presentation presents carbon nanotube vacuum pressure sensor gauges that operate at low power and exhibit a wide-dynamic range based on microelectromechanical systems (MEMS) technology. The fabrication facility, and the formation process are shown. Pressure sensitivity was found to increase rapidly as the bias power was increased. In addition, by etching part of the thermal SiO2 beneath the tubes and minimizing heat conduction through the substrate, pressure sensitivity was extended toward lower pressures. Results are compared to a conventional thin film meander resistor, which was fabricated and whose pressure response was also measured for comparative purposes

    Carbon Nanotube Vacuum Gauges Utilizing Long, Dissipative Tubes

    No full text
    CNT Vacuum Gauges: a) have a broad range of pressure response from 760 - 10(exp -6) Torr. b) have current changes approx. 100's nA in high vacuum regime (10(exp -6) Torr) and sensitivity increases with power and substrate removal. c) have a negative dR/dT (TCR negative) where a thermal hopping energy E(sub a) was determined to be approx. 40 meV. d) have compatible fabrication requirements for their integration with micromachined structures. e) can be operated at low power (nW - micro-W). f) have an active device region footprint of < 10 sq microns. g) are non-intrusive due to small size and passive operation
    corecore