260 research outputs found

    Nanostructured interfacial self-assembled peptide-polymer membranes for enhanced mineralization and cell adhesion

    Get PDF
    This work was supported by national funds through the Portuguese Foundation for Science and Technology (FCT) under the scope of the project PTDC/CTM-BIO/0814/2012 and by the European Regional Development Fund (ERDF) through the Operational Competitiveness Programme “COMPETE” (FCOMP-01-0124-FEDER-028491). J. Borges and R. P. Pirraco gratefully acknowledge funding support from FCT for postdoctoral (SFRH/BPD/103604/2014) and investigator (IF/00347/2015) grants, respectively. Y. Shi acknowledges China Scholarship Council for her PhD scholarship (no. 201307060020). H. S. Azevedo also acknowledges financial support from the EU-funded project “SuprHApolymers” (PCIG14-GA-2013-631871) and A. Mata acknowledges the European Research Council Starting Grant “STROFUNSCAFF” and the Marie Curie Career Integration Grant “BIOMORPH”

    Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering

    Get PDF
    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs

    Supramolecular Presentation of Hyaluronan onto Model Surfaces for Studying the Behaviour of Cancer Stem Cells

    Get PDF
    The supramolecular presentation of extracellular matrix components on surfaces provides a platform for the investigation and control of cell behavior. Hyaluronan (HA) is one of the main components of the extracellular environment and has been shown to play an important role in different cancers and their progression. However, current methods of HA immobilization often require its chemical modification. Herein, a peptide-based self-assembled monolayer (SAM) is used as an anchor to immobilize unmodified HA on a bare gold surface, as demonstrated by the quartz crystal microbalance with dissipation monitoring. Peptide-HA surfaces show increased roughness and greater hydrophobicity when compared to poly-D-lysine/HA surfaces, as measured by atomic force microscopy and water contact angle, respectively. Additionally, the peptide SAM can be micro-contact printed and used to restrict the presentation of HA to specific regions, thereby creating HA patterned surfaces to examine cell behavior. When used for cell culture, these surfaces result in altered adhesion and migration of LUC4 head and neck squamous cell carcinoma cells. These biomimetic surfaces can provide insights into the role of HA in cancer and other diseases and be used as a platform for the development of cell sorting devices.C.O’M. thanks The Queen Mary Institute of Bioengineering and the Engineering and Physical Sciences Research Council for financial support through a Ph.D. studentship (Award number 1502316). J.B. gratefully acknowledges the financial support by Fundação para a CiĂȘncia e a Tecnologia (FCT), I.P., through individual contract (CEECIND/03202/2017). This work was also funded by national funds (OE), through FCT, I.P., in the scope of the framework contract foreseen in the numbers 4, 5, and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. The authors also acknowledge the financial support from the EU-funded project “SuprHApolymers” (PCIG14-GA-2013-631871).publishe

    RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians

    Get PDF
    Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species

    Multi-Layered Films Containing a Biomimetic Stimuli-Responsive Recombinant Protein

    Get PDF
    Electrostatic self-assembly was used to fabricate new smart multi-layer coatings, using a recombinant elastin-like polymer (ELP) and chitosan as the counterion macromolecule. The ELP was bioproduced, purified and its purity and expected molecular weight were assessed. Aggregate size measurements, obtained by light scattering of dissolved ELP, were performed as a function of temperature and pH to assess the smart properties of the polymer. The build-up of multi-layered films containing ELP and chitosan, using a layer-by-layer methodology, was followed by quartz-crystal microbalance with dissipation monitoring. Atomic force microscopy analysis permitted to demonstrate that the topography of the multi-layered films could respond to temperature. This work opens new possibilities for the use of ELPs in the fabrication of biodegradable smart coatings and films, offering new platforms in biotechnology and in the biomedical area

    Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly

    Get PDF
    Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 lm. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability

    Detecting Linkage between a Trait and a Marker in a Random Mating Population without Pedigree Record

    Get PDF
    Modern linkage-based approaches employing extended pedigrees are becoming powerful tools for localizing complex quantitative trait loci. For these linkage mapping methods, it is necessary to reconstruct extended pedigrees which include living individuals, using extensive pedigree records. Unfortunately, such records are not always easy to obtain and application of the linkage-based approaches has been restricted. Within a finite population under random mating, latent inbreeding rather than non-random inbreeding by consanguineous marriages is expected to occur and is attributable to coalescence in a finite population. Interestingly, it has been revealed that significant random inbreeding exists even in general human populations. Random inbreeding should be used to detect the hidden coancestry between individuals for a particular chromosomal position and it could also have application in linkage mapping methods. Here we present a novel method, named finite population based linkage mapping (FPL) method, to detect linkage between a quantitative trait and a marker via random inbreeding in a finite population without pedigree records. We show how to estimate coancestry for a chromosomal position between individuals by using multipoint Bayesian estimation. Subsequently, we describe the FPL method for detecting linkage via interval mapping method using a nonparametric test. We show that the FPL method does work via simulated data. For a random sample from a finite population, the FPL method is more powerful than a standard pedigree-based linkage mapping method with using genotypes of all parents of the sample. In addition, the FPL method was demonstrated by actual microsatellite genotype data of 750 Japanese individuals that are unrelated according to pedigree records to map a known Psoriasis susceptible locus. For samples without pedigree records, it was suggested that the FPL method require limited number of individuals, therefore would be better than other methods using thousands of individuals
    • 

    corecore