353 research outputs found

    Entropy of a Kerr-de Sitter black hole due to arbitrary spin fields

    Full text link
    The Newman-Penrose formalism is used to derive the Teukolsky master equations controlling massless scalar, neutrino, electromagnetic, gravitino, and gravitational field perturbations of the Kerr-de Sitter spacetime. Then the quantum entropy of a non-extreme Kerr-de Sitter black hole due to arbitrary spin fields is calculated by the improved thin-layer brick wall model. It is shown that the subleading order contribution to the entropy is dependent on the square of the spins of particles and that of the specific angular momentum of black holes as well as the cosmological constant. The logarithmic correction of the spins of particles to the entropy relies on the rotation of the black hole and the effect of the cosmological constant.Comment: 28 pages, two figures, Revtex4.0. Final revised version to appear in PR

    Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly

    Get PDF
    Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 lm. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability

    Supercritical phase inversion of starch-poly(e-caprolactone) for tissue engineering applications

    Get PDF
    In this work, a starch-based polymer, namely a blend of starch-poly(ε-caprolactone) was processed by supercritical assisted phase inversion process. This processing technique has been proposed for the development of 3D structures with potential applications in tissue engineering applications, as scaffolds. The use of carbon dioxide as non-solvent in the phase inversion process leads to the formation of a porous and interconnected structure, dry and free of any residual solvent. Different processing conditions such as pressure (from 80 up to 150 bar) and temperature (45 and 55°C) were studied and the effect on the morphological features of the scaffolds was evaluated by scanning electron microscopy and micro-computed tomography. The mechanical properties of the SPCL scaffolds prepared were also studied. Additionally, in this work, the in vitro biological performance of the scaffolds was studied. Cell adhesion and morphology, viability and proliferation was assessed and the results suggest that the materials prepared are allow cell attachment and promote cell proliferation having thus potential to be used in some for biomedical applications.Ana Rita C. Duarte is grateful for financial support from Fundacao para a Ciencia e Tecnologia through the grant SFRH/BPD/34994/2007

    Detecting Linkage between a Trait and a Marker in a Random Mating Population without Pedigree Record

    Get PDF
    Modern linkage-based approaches employing extended pedigrees are becoming powerful tools for localizing complex quantitative trait loci. For these linkage mapping methods, it is necessary to reconstruct extended pedigrees which include living individuals, using extensive pedigree records. Unfortunately, such records are not always easy to obtain and application of the linkage-based approaches has been restricted. Within a finite population under random mating, latent inbreeding rather than non-random inbreeding by consanguineous marriages is expected to occur and is attributable to coalescence in a finite population. Interestingly, it has been revealed that significant random inbreeding exists even in general human populations. Random inbreeding should be used to detect the hidden coancestry between individuals for a particular chromosomal position and it could also have application in linkage mapping methods. Here we present a novel method, named finite population based linkage mapping (FPL) method, to detect linkage between a quantitative trait and a marker via random inbreeding in a finite population without pedigree records. We show how to estimate coancestry for a chromosomal position between individuals by using multipoint Bayesian estimation. Subsequently, we describe the FPL method for detecting linkage via interval mapping method using a nonparametric test. We show that the FPL method does work via simulated data. For a random sample from a finite population, the FPL method is more powerful than a standard pedigree-based linkage mapping method with using genotypes of all parents of the sample. In addition, the FPL method was demonstrated by actual microsatellite genotype data of 750 Japanese individuals that are unrelated according to pedigree records to map a known Psoriasis susceptible locus. For samples without pedigree records, it was suggested that the FPL method require limited number of individuals, therefore would be better than other methods using thousands of individuals

    Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatin

    Get PDF
    Fast-dissolving delivery systems (FDDS) have received increasing attention in the last years. Oral drug delivery is still the preferred route for the administration of pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES) composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/ v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental parameters were optimized. Due to the high surface area of polymer fibers, this type of construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising applications in the development of new drug delivery systems.The research leading to these results has received funding from Fundação para a Ciência e a Tecnologia (FCT) through the projects ENIGMA - PTDC/EQU-EPR/ 121491/2010 and UID/CTM/50025/2013, LAQVREQUIMTE: UID/QUI/50006/2013, UCIBIO-REQUIMTE: UID/Multi/04378/2013 (co-financed by the ERDF under the PT2020 Partnership Agreement [POCI-01-0145-FEDER- 007728]) and by FEDER through the COMPETE 2020 Programme. Marta Martins is grateful for financial support from FCT through the grant BIM/PTDC/EQUEPR/121491/ 2010/ENIGMA. This research has also received funding from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement number REGPOTCT2012-316331-POLARIS and from the project BNovel smart and biomimetic materials for innovative regenerative medicine approaches^ RL1 - ABMR - NORTE-01-0124- FEDER-000016) co-financed by North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Biocompatible polymeric microparticles produced by a simple biomimetic approach

    Get PDF
    The use of superhydrophobic surfaces to produce polymeric particles proves to be biologically friendly since it entails the pipetting and subsequent cross-linking of polymeric solutions under mild experimental conditions. Moreover, it renders encapsulation efficiencies of ∼100%. However, the obtained particles are 1 to 2 mm in size, hindering to a large extent their application in clinical trials. Improving on this technique, we propose the fabrication of polymeric microparticles by spraying a hydrogel precursor over superhydrophobic surfaces followed by photo-cross-linking. The particles were produced from methacrylamide chitosan (MA-CH) and characterized in terms of their size and morphology. As demonstrated by optical and fluorescence microscopy, spraying followed by photo-cross-linking led, for the first time, to the production of spherical particles with diameters on the order of micrometers, nominal sizes not attainable by pipetting. Particles such as these are suitable for medical applications such as drug delivery and tissue engineering.We thank Ivo Aroso and Ana Isabel Neto for their valuable support with FTIR and compression experiments, respectively. A.M.S.C. thanks FCT for financial support through grant BIM/PTDC/CTM-BPC/112774/2009_02. M.A.-M. thanks CONACyT (Mexico) for financial support through post-doc grant no. 203732. N.M.O. thanks FCT for financial support through Ph.D. scholarship no. SFRH/BD/73172/2010. This work was funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. REGPOT-CT2012-316331-POLARIS, by FEDER through the Competitive Factors Operation Program-COMPETE, and by national funds through FCT - Fundacao para a Ciencia e a Tecnologia in the scope of project PTDC/CTM-BIO/1814/2012

    Photopatterned antibodies for selective cell attachment

    Get PDF
    We present a phototriggerable system that allows for the spatiotemporal controlled attachment of selected cell types to a biomaterial using immobilized antibodies that specifically target individual cell phenotypes.o-Nitrobenzyl caged biotin was used to functionalize chitosan membranes and mediate site-specific coupling of streptavidin and biotinylated antibodies after light activation. The ability of this system to capture and immobilize specific cells on a surface was tested using endothelial-specific biotinylated antibodies and nonspecific ones as controls. Homogeneous patterned monolayers of human umbilical vein endothelial cells were obtained on CD31-functionalized surfaces. This is a simple and generic approach that is applicable to other ligands, materials, and cell types and shows the flexibility of caged ligands to trigger and control the interaction between cells and biomaterials.We thank Martina Knecht (MPIP) for help with the synthesis of caged biotin and Dr. Ron Unger and Prof. C. J. Kirkpatrick (University Clinic Mainz, RepairLab) for providing HUVECs. C.A.C. acknowledges funding support from the Portuguese Foundation for Science and Technology (FCT) (fellowship SFRH/BD/61390/2009) and from the International Max-Planck Research School in Mainz. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. REGPOT-CT2012-316331-POLARIS

    Chemical composition of nanoporous layer formed by electrochemical etching of p-type GaAs

    Get PDF
    Abstract : We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate
    corecore