4 research outputs found

    Neighbours of arbuscular‐mycorrhiza associating trees are colonized more extensively by arbuscular mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands

    Get PDF
    Arbuscular mycorrhiza represents a ubiquitous nutritional symbiosis between the roots of most terrestrial plant species and fungi of the subphylum Glomeromycotina (Spatafora et al., 2016). Terrestrial habitats are unlikely to be limited in propagules of arbuscular mycorrhizal fungi (AMF), because AMF propagule densities build up fast in vegetated soil (e.g. Gould et al., 1996). We start to appreciate, however, that shortages in AMF propagules are common in some habitats, such as agricultural fields subject to intensive farming (Schnoor et al., 2011; Manoharan et al., 2017). Forest habitats in the temperate region might also be occasionally AMF propagule limited (Veresoglou et al., 2017), but to the best of our understanding this has not been shown with empirical data

    Excluding arbuscular mycorrhiza lowers variability in soil respiration but slows down recovery from perturbations

    Get PDF
    The role of mutualisms in mediating temporal stability in an ecosystem has been debated extensively. Here, we focus on how a ubiquitous mutualism, arbuscular mycorrhiza, influences temporal stability of a key ecosystem process, ecosystem respiration. We discriminated between two forms of temporal stability, temporal variability and resilience, and hypothesized that excluding arbuscular mycorrhiza would be detrimental for both of them. We analyzed a set of 10 parallel manipulation experiments to assess how excluding arbuscular mycorrhiza modulates temporal stability compared to other common experimental factors. We quantified the temporal variability of ecosystem respiration and the resilience to experimental perturbations (i.e., pulses, stresses, and a disturbance) following manipulations of mycorrhizal state. We observed lower temporal variability in the absence of arbuscular mycorrhiza in discord to our main hypothesis. Manipulating arbuscular mycorrhiza had a stronger impact on temporal variability than the pulse (application of urea), the stress (addition of salt), and a disturbance (experimental defoliation) but weaker than excluding primary producers or comparing across different plant species. Resilience to experimental perturbations declined in non‐mycorrhizal microcosms. We present an empirical study on how mutualisms impact temporal stability. Arbuscular mycorrhiza differentially alters temporal variability and resilience, highlighting that generalizing across different forms of temporal stability could be misleading

    Myristate and the ecology of AM fungi : significance, opportunities, applications and challenges

    Get PDF
    A recent study by Sugiura and coworkers reported the nonsymbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology

    Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges

    No full text
    A recent study by Sugiura and coworkers reported the nonsymbiotic growth and spore production of an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis, when the fungus received an external supply of certain fatty acids, myristates (C:14). This discovery follows the insight that AM fungi receive fatty acids from their hosts when in symbiosis. If this result holds up and can be repeated under nonsterile conditions and with a broader range of fungi, it has numerous consequences for our understanding of AM fungal ecology, from the level of the fungus, at the plant community level, and to functional consequences in ecosystems. In addition, myristate may open up several avenues from a more applied perspective, including improved fungal culture and supplementation of AM fungi or inoculum in the field. We here map these potential opportunities, and additionally offer thoughts on potential risks of this potentially new technology. Lastly, we discuss the specific research challenges that need to be overcome to come to an understanding of the potential role of myristate in AM ecology
    corecore