868 research outputs found

    Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles

    Get PDF
    Plastic debris has been identified as a potential threat to Antarctic marine ecosystems, however, the impact of nanoplastics (<1 μm) is currently unexplored. Antarctic krill (Euphausia superba) is a keystone species of Southern Ocean pelagic ecosystems, which plays a central role in the Antarctic food webs and carbon (C) cycle. Krill has been shown to rapidly fragment microplastic beads through the digestive system, releasing nanoplastics with unknown toxicological effects. Here we exposed krill juveniles to carboxylic (COOH, anionic) and amino- (NH2, cationic) polystyrene nanoparticles (PS NPs) and we investigated lethal and sub-lethal endpoints after 48 h. The analysis of PS NP suspensions in Antarctic sea water (SW) media showed that PS-COOH formed large agglomerates (1043 ± 121 nm), while PS-NH2 kept their nominal size (56.8 ± 3 nm) during the exposure time. After 48 h, no mortality was found but increase in exuviae production (12.6 ± 1.3%) and reduced swimming activity were observed in juveniles exposed to PS-NH2. The microbial community composition in SW supports the release of krill moults upon PS NP exposure and stimulates further research on the pivotal role of krill in shaping Southern Ocean bacterial assemblages. The presence of fluorescent signal in krill faecal pellets (FPs) confirmed the waterborne ingestion and egestion of PS-COOH at 48 h of exposure. Changes in FP structure and properties were also associated to the incorporation of PS NPs regardless of their surface charge. The effects of PS NPs on krill FP properties were compared to Control 0 h as a reference for full FPs (plastic vs food) and Control 48 h as a reference for more empty-like FPs (plastic vs lack of food). Exposure to PS NPs led to a FP sinking rate comparable to Control 48 h, but significantly lower than Control 0 h (58.40 ± 23.60 m/d and 51.23 ± 28.60 m/d for PS-COOH and PS-NH2; 168.80 ± 74.58 m/d for Control 0 h). Considering the important role played by krill in the food web and C export in the Southern Ocean, the present study provides cues about the potential impact of nanoplastics on Antarctic pelagic ecosystems and their biogeochemical cycles

    Ferulic acid-nlc with lavandula essential oil: A possible strategy for wound-healing?

    Get PDF
    Nowadays, an increasing interest in combinatorial drug delivery systems is emerging, highlighting the possibility of exploiting essential oils (EO) for topical applications. This work aimed at developing nanostructured lipid carriers (NLC) for the combined delivery of ferulic acid and Lavandula EO, whose beneficial effects in wound-healing processes have been widely reported. Homogeneous (polydispersity index, PDI &lt; 0.2) nanoparticles with a small size ([removed]85%) were obtained. The co-presence of ferulic acid and Lavandula EO, as compared to synthetic isopropyl myristate-based NLC, increased nanoparticles’ stability, due to higher ordering chains, as confirmed by morphological and physicochemical studies. An enhanced cytocompatibility was observed when combining ferulic acid and Lavandula EO, as confirmed by in vitro studies on fibroblasts. Furthermore, the combined delivery of ferulic acid and Lavandula EO significantly promoted cell migration with higher effectiveness in respect to the free drug solution and the carrier without the EO. Taken all together, our results suggest a potential combined effect of the antioxidant ferulic acid and Lavandula EO co-delivered in lipid nanoparticles in promoting cell proliferation and migration, representing a promising strategy in the treatment of wounds

    Synergistic effect induced by gold nanoparticles with polyphenols shell during thermal therapy: Macrophage inflammatory response and cancer cell death assessment

    Get PDF
    Background: In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. Methods: Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. Results: Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. Conclusions: Au NP@polyphenols may be powerful agents in cancer treatment

    Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement

    Get PDF
    inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism

    Similarities and differences between myocarditis following COVID-19 mRNA vaccine and multiple inflammatory syndrome with cardiac involvement in children

    Get PDF
    despite the multiple benefits of vaccination, cardiac adverse events following COVID-19 immunization (c-AEFI) have been reported. these events as well as the severe cardiac involvement reported in Multisystem inflammatory syndrome in children (MIS-C) appear more frequent in young adult males. herein, we firstly report on the inflammatory profiles of patients experiencing c-AEFI in comparison with age, pubertal age and gender matched MIS-C with cardiac involvement. Proteins related to systemic inflammation were found higher in MIS-C compared to c-AEFI, whereas a higher level in proteins related to myocardial injury was found in c-AEFI. In addition, higher levels of DHEAS, DHEA, and cortisone were found in c-AEFI which persisted at follow-up. No anti-heart muscle and anti-endothelial cell antibodies have been detected. overall current comparative data showed a distinct inflammatory and androgens profile in c-AEFI patients which results to be well restricted on heart and to persist months after the acute event

    Immunotherapy with an HIV-DNA Vaccine in Children and Adults

    Get PDF
    Therapeutic HIV immunization is intended to induce new HIV-specific cellular immune responses and to reduce viral load, possibly permitting extended periods without antiretroviral drugs. A multigene, multi-subtype A, B, C HIV-DNA vaccine (HIVIS) has been used in clinical trials in both children and adults with the aim of improving and broadening the infected individuals’ immune responses. Despite the different country locations, different regimens and the necessary variations in assays performed, this is, to our knowledge, the first attempt to compare children’s and adults’ responses to a particular HIV vaccine. Ten vertically HIV-infected children aged 4–16 years were immunized during antiretroviral therapy (ART). Another ten children were blindly recruited as controls. Both groups continued their antiretroviral treatment during and after vaccinations. Twelve chronically HIV-infected adults were vaccinated, followed by repeated structured therapy interruptions (STI) of their antiretroviral treatment. The adult group included four controls, receiving placebo vaccinations. The HIV-DNA vaccine was generally well tolerated, and no serious adverse events were registered in any group. In the HIV-infected children, an increased specific immune response to Gag and RT proteins was detected by antigen-specific lymphoproliferation. Moreover, the frequency of HIV-specific CD8+ T-cell lymphocytes releasing perforin was significantly higher in the vaccinees than the controls. In the HIV-infected adults, increased CD8+ T-cell responses to Gag, RT and viral protease peptides were detected. No augmentation of HIV-specific lymphoproliferative responses were detected in adults after vaccination. In conclusion, the HIV-DNA vaccine can elicit new HIV-specific cellular immune responses, particularly to Gag antigens, in both HIV-infected children and adults. Vaccinated children mounted transient new HIV-specific immune responses, including both CD4+ T-cell lymphoproliferation and late CD8+ T-cell responses. In the adult cohort, primarily CD8+ T-cell responses related to MHC class I alleles were noted. However, no clinical benefits with respect to viral load reduction were ascribable to the vaccinations alone. No severe adverse effects related to the vaccine were found in either cohort, and no virological failures or drug resistances were detected

    Relapsing myocarditis following initial recovery of post COVID-19 vaccination in two adolescent males – Case reports

    Get PDF
    Whilst there has been significant public health benefits associated with global use of COVID-19 spike protein vaccines, potential serious adverse events following immunization have been reported. Acute myocarditis is a rare complication of COVID19 vaccines and often it is self-limiting. We describe two cases experiencing recurrent myocarditis following mRNA COVID-19 vaccine despite a prior episode with full clinical recovery. Between September 2021-September 2022 we observed two male adolescents with recurrent myocarditis related to mRNA-based-COVID19 vaccine. During the first episode both patients presented with fever and chest pain few days after their second dose of BNT162b2 mRNA Covid-19 Vaccine (Comirnaty &amp; REG;). The blood exams showed increased cardiac enzymes. In addition, complete viral panel was run, showing HHV7 positivity in a single case. The left ventricular ejection fraction (LVEF) was normal at echocardiogram but cardiac magnetic resonance scanning (CMR) was consistent with myocarditis. They were treated with supportive treatment with full recovery. The 6 months follow-up demonstrated good clinical conditions with normal cardiological findings. The CMR showed persistent lesions in left ventricle 's wall with LGE. After some months the patients presented at emergency department with fever and chest pain and increased cardiac enzymes. No decreased LVEF was observed. The CMR showed new focal areas of edema in the first case report and stable lesions in the second one. They reached full recovery with normalization of cardiac enzymes after few days. These case reports outline the need of strict follow-up in patients with CMR consistent with myocarditis after mRNA-basedCOVID19 vaccine. More efforts are necessary to depict the underlying mechanisms of myocarditis after SARS-CoV2 vaccination to understand the risk of relapsing and the long-term sequelae. &amp; COPY; 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Scoping intergenerational effects of nanoplastic on the lipid reserves of Antarctic krill embryos

    Get PDF
    Antarctic krill (Euphausia superba) plays a central role in the Antarctic marine food web and biogeochemical cycles and has been identified as a species that is potentially vulnerable to plastic pollution. While plastic pollution has been acknowledged as a potential threat to Southern Ocean marine ecosystems, the effect of nanoplastics (<1000 nm) is poorly understood. Deleterious impacts of nanoplastic are predicted to be higher than that of larger plastics, due to their small size which enables their permeation of cell membranes and potentially provokes toxicity. Here, we investigated the intergenerational impact of exposing Antarctic krill to nanoplastics. We focused on whether embryonic energy resources were affected when gravid female krill were exposed to nanoplastic by determining lipid and fatty acid compositions of embryos produced in incubation. Embryos were collected from females who had spawned under three different exposure treatments (control, nanoplastic, nanoplastic + algae). Embryos collected from each maternal treatment were incubated for a further 6 days under three nanoplastic exposure treatments (control, low concentration nanoplastic, and high concentration nanoplastic). Nanoplastic additions to seawater did not impact lipid metabolism (total lipid or fatty acid composition) across the maternal or direct embryo treatments, and no interactive effects were observed. The provision of a food source during maternal exposure to nanoplastic had a positive effect on key fatty acids identified as important during embryogenesis, including higher total polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) when compared to the control and nanoplastic treatments. Whilst the short exposure time was ample for lipids from maternally digested algae to be incorporated into embryos, we discuss why the nanoplastic-fatty acid relationship may be more complex. Our study is the first to scope intergeneration effects of nanoplastic on Antarctic krill lipid and fatty acid reserves. From this, we suggest directions for future research including long term exposures, multi-stressor scenarios and exploring other critical energy reserves such as proteins

    TeV physics and the Planck scale

    Get PDF
    Supersymmetry is one of the best motivated possibilities for new physics at the TeV scale. However, both concrete string constructions and phenomenological considerations suggest the possibility that the physics at the TeV scale could be more complicated than the Minimal Supersymmetric Standard Model (MSSM), e.g., due to extended gauge symmetries, new vector-like supermultiplets with non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly comment on some of these possibilities, and discuss in more detail the class of extensions of the MSSM involving an additional standard model singlet field. The latter provides a solution to the ÎĽ\mu problem, and allows significant modifications of the MSSM in the Higgs and neutralino sectors, with important consequences for collider physics, cold dark matter, and electroweak baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic
    • …
    corecore