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Tailored treatments in inborn
errors of immunity associated with
atopy (IEIs-A) with skin
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Carmela Giancotta1, Nicole Colantoni1, Lucia Pacillo1,2,
Veronica Santilli1, Donato Amodio1, Emma Concetta Manno1,
Nicola Cotugno1,2, Gioacchino Andrea Rotulo1,3, Beatrice Rivalta1,2,
Andrea Finocchi1,2, Caterina Cancrini1,2, Andrea Diociaiuti4,
May El Hachem4 and Paola Zangari1*
1Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology,
IRCCS Bambino Gesù Children’s Hospital, Rome, Italy, 2Department of Systems Medicine, University of
Tor Vergata, Rome, Italy, 3Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics,
Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy, 4Dermatology Unit and
Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children’s
Hospital, Rome, Italy

Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited
monogenic disorders that occur with immune dysregulation and frequent skin
involvement. Several pathways are involved in the pathogenesis of these
conditions, including immune system defects, alterations of skin barrier and
metabolism perturbations. Current technological improvements and the higher
accessibility to genetic testing, recently allowed the identification of novel
molecular pathways involved in IEIs-A, also informing on potential tailored
therapeutic strategies. Compared to other systemic therapy for skin diseases,
biologics have the less toxic and the best tolerated profile in the setting of
immune dysregulation. Here, we review IEIs-A with skin involvement focusing
on the tailored therapeutic approach according to their pathogenetic mechanism.
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with associated atopy; IPEX syndrome, immune dysregulation, polyendocrinopathy and enteropathy; IVIG,
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Comèl-Netherton syndrome; NS-ILC, typical ichthyosis linearis circumflexa Netherton syndrome; NS-SE,
scaly erythroderma Netherton syndrome; Os, Omenn syndrome; OS, overall survival; PADs, primary atopic
disorders; PGM3, phosphoglucomutase 3; PLCG2, phospholipase C gamma 2; PLTEID, platelet
abnormalities with eosinophilia and immunomediated inflammatory disease; PSS, peeling skin syndrome;
SAM, multiple allergies and metabolic wasting; SPINK5, inhibitor Kazal-type 5; STAT3, transducer and
activator of transcription 3; TGFβ, transforming growth factor β; TYK2, tyrosine kinase 2; WAS, Wiskott-
Aldrich syndrome; ZNF431, zinc finger protein 431.
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1. Introduction

Inborn errors of immunity (IEIs) include more than 400

inherited disorders causing specific perturbations of immune

development and function (1). The knowledge about the IEIs is

increasing over time and it has been definitely demonstrated that

severe allergic inflammation may be the initial presentation of the

immune system dysregulation. Inborn errors of immunity

associated with atopy (IEIs-A) also defined primary atopic

disorders (PADs) have been categorized for the first time in 2018

as a subgroup of IEIs characterized by allergy or atopy

manifestations (2). Skin involvement is frequently present in these

conditions and may present with eczema, urticaria and

erythroderma. Among these skin manifestations, atopic dermatitis

(AD) is the most common form of eczema, characterized by

pruritus, skin inflammation and chronic/relapsing course. IEIs-A

diagnosis may be challenging in the setting of skin disorders, and

their management and outcome can be widely different. In the last

decades, the expanding employment of next-generation sequencing

(NGS) has resulted in the identification of novel candidate disease

genes and enabled the molecular diagnosis of an increasing

number of patients with IEIs. The identification of specific gene

defects in IEIs-A has the opportunity to inform on possible

therapeutic targets and personalized approaches.

In the present review, we focus on IEIs-A with skin manifestations

and in particular on their pathogenetic mechanism and the

therapeutic approach targeting the underpinning immune defect.

Literature review was performed using Pubmed, Scopus,Web of

Science databases and ClinicalTrials.gov, recovering publications on

IEIs with atopic manifestations. The search approach was performed

using a free-text search (keywords: inborn errors of immunity,

primary immunodeficiency with atopy and allergy, atopic disorders,

tailored therapies, biologic drugs). We searched recent articles

published up to December 2022.
2. Pathogenetic mechanism and
treatment of IEIs-A with skin
involvement

IEIs-A include different genetic disorders with several

pathogenetic pathways responsible for generating an atopic

environment, possibly associated with elevation of serum total

immunoglobulin (Ig) E. The major mechanisms involved in the

genesis of atopy, range from immune system defect and

alterations of skin barrier to metabolism perturbations (Table 1).
2.1. Impaired T cell receptor signaling and
cytoskeletal remodeling

2.1.1. WAS
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive

disorder characterized by thrombocytopenia, infections,

eczematous rash and a high risk of developing malignancy and
Frontiers in Pediatrics 02
autoimmune diseases. The illness is due to mutations in WAS

gene which encodes WAS protein (WASp), involved in cell

signaling and remodeling of cytoskeleton in hematopoietic cells.

The WASp is crucial for T cell proliferation, differentiation and

survival. WASp deficient T lymphocytes show gene transcription

alterations of Th1 cytokines, leading to a skewed Th2 response

(3). The restriction of T cell receptor-repertoire diversity has

been shown to contribute to this immune dysregulation (4).

WAS patients present normal frequency of regulatory T (Treg)

cells, but their function is impaired as demonstrated by low

interleukin (IL)-10 production potentially predisposing to

pathological inflammation and autoimmunity (5). It has been

reported that WASp is also involved in the development of

regulatory B (Breg) cell, affecting the equilibrium and migration

of Treg and Th17 cells during the inflammatory state (6). High

levels of Th2 and Th17 cytokines have been found in the skin, as

well as the itch-associated molecules (7) both contributing to an

inflammatory environment. Moreover, high eosinophils and

serum IgE levels are often present (3).

Eczema is found in about 80% of WAS patients, with the

characteristics of an early onset, severe and widespread AD,

accompanied by petechiae and purpura due to the associated

thrombocytopenia.

WAS treatment strategies consist of supportive measures,

hematopoietic stem cell transplantation (HSCT) and gene therapy.

Immunosuppressive/immunomodulatory drugs to control

autoimmune diseases linked to WAS include corticosteroids,

intravenous immunoglobulin (IVIG), rituximab, cyclophosphamide,

azathioprine, and calcineurin inhibitors (8). With regard to the

dermatitis the treatment is based on topical emollients,

corticosteroids and according to some authors antiseptic baths (3).

Immunosuppressive drugs (corticosteroids, cyclosporine) are

usually administered to control immune dysregulation signs.

Anakinra, a human IL-1 receptor antagonist, has been administered

with good results, suggesting an involvement of the innate immunity

in the generation of auto inflammatory manifestations in WAS

patients (9). It has been also described a partial response to

omalizumab, a humanized recombinant monoclonal anti IgE

antibody, in a genetically confirmed child with WAS and atypical

clinical manifestations. The patient presented a history of diffuse

pruritic eczema resistant to conventional systemic immunosuppressive

therapy, which improved after three subcutaneous injections of

omalizumab with concomitant topical steroid (10).

Patients with classic WAS are prone to autoimmune disorders

and lymphoma or other malignancies (11). However, the clinical

phenotype of WAS is variable and there are patients with less

severe symptoms who survive childhood and therefore do not

require transplantation, especially in cases due to hypomorphic

variants in the WAS gene (12). In the classic form of WAS, the

gold-standard treatment is represented by bone marrow

transplantation (13–15). The outcomes of children undergoing

HSCT are optimal, with a survival rate of more than 97%. In

contrast, the few patients who did not underwent HSCT did not

reach adulthood (16). Age at HSCT seems to be the only factor

significantly associated with overall survival (OS), in fact, patients

below 5 years of age have higher OS compared with those who
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were older then 5 years at the time of HSCT (5-year OS: 94% vs.

66%, respectively) (14). Conversely, OS is not significantly

associated with conditioning regimen intensity, donor type,

hematopoietic cell source, disease severity, and WASp expression.

Full chimerism seems to decrease the incidence of post-HSCT

autoimmune diseases and chronic inflammation. Of note, some

clinical features of the syndrome, such as AD, may persist in a

percentage of patients after transplantation (17).

It was recently described a WAS patient who developed graft-

versus-host disease (GvHD) following HSCT. Skin lesions and a

high titer of IgE persisted after the use of immunosuppressive

treatment. Therefore, a Th2 pathogenesis has been hypothesized,

and dupilumab, a monoclonal antibody that inhibits IL-4 and IL-

13 signaling, was started with significant clinical benefit (18).

Gene therapy is another effective and safe treatment for WAS

providing an adequate immunological reconstitution and control

of autoimmunity in most patients (13). Currently, the use of

lentiviral vector gene therapy showed great efficacy in patients

with WAS who do not have a compatible donor (19).

2.1.2. ARPC1B
Atopic manifestations are described in the platelet abnormalities

with eosinophilia and immunomediated inflammatory disease

(PLTEID) due to biallelic variants of the actin-related protein 2/3

complex subunit 1B (ARPC1B) gene. PLTEID patients present a

broad spectrum phenotype resembling WAS phenotype including

severe inflammatory state, lymphoproliferation, purpura, bleeding

and immunodeficiency characterized by eczema, severe infections

and early-onset vasculitis (20).

ARPC1B protein is a component of the actin-related protein 2/

3 complex (Arp2/3) and together with WASp regulate cytoskeletal

remodeling of actin and the DNA damage response (21).

Auto inflammatory manifestations of ARPC1B patients are

potentially controlled by immunosuppressive therapy such as

corticosteroids, mofetil mycophenolate, and rapamycin.

Conversely, the use of anti-TNF drugs led to unsatisfactory results.

Given the early onset symptoms and the severity of comorbidities,

HSCT is currently the only curative treatment (22). In seven

ARPCB1 patients, allo-HSCT has been associated with a high

survival rate with limited post-transplant morbidity (23). At a

median follow-up of 19 months, 6 out of 7 patients are alive and

disease-free.

In selected cases, specifically in presence of atopic disorders,

biological drugs targeting Th2 pathway could be used. We

recently reported a substantial improvement of eczema after

starting dupilumab in an ARPC1B child whose phenotype was

characterized by frequent infections, thrombocytopenia, elevated

eosinophils, IgA and IgE levels, vasculitis, colitis and severe

dermatitis refractory to conventional medical therapy. At the age

of 10 years, she received dupilumab with significant

improvement of dermatitis and itchiness (21).

2.1.3. DOCK8
Dedicator of cytokinesis 8 (DOCK8) encodes a protein highly

expressed in lymphocytes behaving as actin cytoskeleton regulator.

Biallelic loss-of-function (LOF) DOCK8 mutations result in a
Frontiers in Pediatrics 03
combined immunodeficiency characterized by atopy, severe

infections, autoimmunity, and malignancy. DOCK8 deficiency

impairs the survival, function and migration of immune cells and

it impacts both innate and adaptive immune responses. Adaptive

immune response is affected through several mechanisms. Among

them the main mechanism is related to the impaired actin

cytoskeleton rearrangement that causes a defective immune

synapse formation. This contributes to impaired B, T and NKT

cell survival and long-lived memory responses. Moreover, NK and

CD8 cells show an impaired effector activity (24). Naïve DOCK8-

deficient CD4+ T cells display increased differentiation towards

the Th2 cells and a higher proportion of activated cells producing

Th2 cytokines when compared to controls (24).

Few cases of pediatric patients with DOCK8 mutation treated

with dupilumab are described so far. Two female patients, 10 and

11.5 years old respectively, obtained a substantial clinical benefit

from dupilumab administration after only one month of treatment.

The itchiness was much improved and also secondary skin

infections were reduced, without increase in systemic infections.

Serum IgE levels decreased significantly after treatment (25).

The use of omalizumab in an adult patient with DOCK8

mutation has been described with an improvement of skin

lesions (26).

Biological drugs are a viable alternative to improve the skin

manifestations, and consequently the quality of life, in patients

awaiting HSCT, that remains the only resolutive treatment.

An international survey of 136 DOCK8 transplanted patients

patients showed an OS of 87% at 10 years, 47% at 20 years, and

33% at 30 years (27). A multicenter retrospective study of 22

patients reported an OS of 89% after matched related HSCT and

81% after unrelated HSCT (28).

2.1.4. MALT1
Mucosa-associated lymphoid tissue lymphoma translocation

protein 1 (MALT1) is a paracaspase assembled with B cell CLL/

lymphoma 10 (BCL10). Following receptor stimulation, BCL10-

MALT1 binds to a caspase recruitment domain (CARD) family

proteins such as CARD9, CARD10 or CARD11, forming the

CARD-BCL10-MALT1 (CBM) complex. It binds antigen

receptors activating the signaling of the NF-κB, JNK, and

mTORC1 pathways. The CBM complex and consequently

MALT1, have a crucial role in activation, survival, proliferation

and metabolism of lymphocytes. Germline LOF variants in

MALT1 clinically present recurrent infections, oral and intestinal

mucosal involvement, dermatitis and failure to thrive. The

impaired CARD-dependent signaling observed in keratinocytes of

MALT1 deficient patients could alter the skin barrier and lead to

an increase risk of skin infections as well as dermatitis (29).

Since the relevance of the CBM complex in the development of

several diseases, targeted drugs acting on this pathway are

recently attracting research interest. In particular, MALT1

inhibitors are considered specific and efficient drugs that might

be finally promising options for the therapy of malignancies and

diseases associated with lymphoproliferation (30).

Of note, MALT1 deficiency has been successfully treated with

HSCT (31–34).
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TABLE 1 Classification of IEIs-A.

Pathogenetic
mechanism

Gene
mutation

Skin
involvement

Immunological phenotype Conventional therapy Tailored therapy

Cytoskeletal
abnormalities

WAS Eczema ↑ IgE level, eosinophilia,
Thrombocytopenia

HSCT, immunosuppressive drugs
(CST, RTX, CP, AZA, CNI), TT

Dupilumab,
omalizumab, GT

ARPC1B Eczema ↑ IgE and IgA level, eosinophilia,
lymphopenia, thrombocytopenia

HSCT, TT Dupilumab

DOCK8 Eczema ↑ IgE level, eosinophilia, ↓ IgM level,↓T
cells, ↓ Th17 cells, ↑ B cells, ↓switched

memory B cells

HSCT, TT Dupilumab, omalizumab

Impaired T cell
receptor signaling

CARD11 LOF Atopic dermatitis ↑ IgE level, eosinophilia, normal or ↓ B
cells, normal/↓IgG,↓T cell

proliferation,↓NF-κB phosphorylation/
IκBα degradation

TT Glutamine
supplementation,

dupilumab

CARD14 LOF/
GOF

Atopic dermatitis,
psoriasis, pityriasis

rubra pilaris

↑ IgE level, eosinophilia, NA NA

MALT1 Eczema ↑ CD3 + and CD4+, ↓ T cell
proliferation, ↓ NF-κB phosphorylation,
↓IκBα degradation, ↓IL-2 secretion ↑

IgE level

HSCT, TT NA

Skin barrier
dysfunction

SPINK5 Ichtyosis, atopic
dermatitis

↑ IgE level, eosinophilia, ↓ memory B
cells

TT, calcipotriol, AAT, OR, UVB,
IVIG

TNF inhibitors,
dupilumab, omalizumab,

ustekinumab, GT

DSG1 Atopic dermatitis,
psoriasiform
dermatitis

↑ IgE level, eosinophilia NA Ustekinumab,
sekukinumab

FLG Atopic dermatitis ↑ IgE level, eosinophilia TT FLG replacement
therapy

CDSN Atopic dermatitis,
ichthyosiform
erythroderma

↑ IgE level, eosinophilia Kallikrein inhibitors, TT GT

Mast cell
deregulation

PLCG2 Cold urticaria, skin
granulomas

↓ IgM and IgA, ↑ IgE level, ↓ memory B
cells

CST, antihistamines, dapsone and
hydroxychloroquine

Omalizumab, IL1 and
TNF inhibitors

Metabolic
disturbance

PGM3 Atopic dermatitis ↑ IgE level, normal/↑ IgG and IgA, T
cell lymphopenia, ↓B cells and memory

B cells, neutropenia

HSCT, Galactose/GlcNAc/uridine
supplementation, TT

NA

T cell repertoire
restriction

RAG1/RAG2 Erythroderma ↑ IgE level, eosinophilia, lymphopenia,
T-B-NK+

HSCT, immunosuppressive drugs
(CsA, CST), TT

Dupilumab, GT, GE

ZAP70 Erythroderma Eosinophilia, ↓CD8 HSCT, immunosuppressive drugs
(CsA, CST), TT

NA

IL7-R Erythroderma T-B + NK+ HSCT, immunosuppressive drugs
(CsA, CST), TT

GT

IL2RG Erythroderma ↑ IgE level, eosinophilia, T-B + NK- HSCT, immunosuppressive drugs
(CsA, CST), TT

NA

LIG4 Erythroderma ↑ IgE level, eosinophilia, T-B-NK+ HSCT, immunosuppressive drugs
(CsA, CST), TT

NA

DCLRE1C Erythroderma ↑ IgE level, eosinophilia, T-B-NK+ HSCT, immunosuppressive drugs
(CsA, CST), TT

NA

Atypical Complete
DiGeorge
Syndrome
22q11del

Erythroderma ↓T cells,↓TREC, oligoclonal T-cell
expansion

CTT, immunosuppressive drugs,
TT, ThT

NA

CHD7 Erythroderma ↓T cells,↓TREC NA NA

FOXN1 Erythroderma, total
alopecia

↓T cells HSCT, ThT NA

TBX1E1C Erythroderma ↓T cells,↓TREC NA NA

Cytokine signalling
defects

STAT3 LOF Eczema ↑ IgE level, eosinophilia, lymphopenia,
↓ TH17 level, ↓ memory B cells

HSCT, immunosuppressive drugs
(CST, tacrolimus, CsA), TT

Dupilumab

ZNF341 Eczema ↑ IgE and IgG level, ↓ TH17 level and
NK cells, ↓ memory B cells

HSCT, TT Dupilumab

TGFBR Eczema ↑ IgE level, eosinophilia NA NA

STAT5b Eczema ↑ IgE level, moderate lymphopenia, ↓
NK and T cells, ↑ B cells and IgG level

NA NA

IL6ST Eczema ↑ IgE level, eosinophilia, ↓ Th17 cells, ↓
memory B cells

NA NA

(continued)
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TABLE 1 Continued

Pathogenetic
mechanism

Gene
mutation

Skin
involvement

Immunological phenotype Conventional therapy Tailored therapy

TYK2 Psoriasis-like
dermatitis, atopic

dermatitis

↑ IgE level (incostant) NA JAK inhibitors

STAT6 GOF Atopic dermatitis ↑ IgE level, eosinophilia NA Dupilumab, JAK
inhibitors

ERBIN Eczema ↑ IgE level, eosinophilia, ↑ Treg NA NA

IL6RA Eczema, skin abscess ↑ IgE level, normal/↓ IgM, G, A, ↓
switched memory B cells

NA NA

Regulatory T Cell
Defects

FOXP3 Eczema ↑ IgE and IgA levels, eosinophilia, ↓
Treg, normal CD4/CD8 T cells

HSCT, immunosuppressive drugs
(CNI, CsA, sirolimus, tacrolimus,

CST), mTOR inhibitors

Dupilumab, GT, GE

CST, corticostreoids; CsA, ciclosporin A; HSCT, hematopoietic stem cell transplantation; GT, gene therapy; GE, genome editing; RTX, rituximab; CP, cyclophosphamide;

AZA, azathioprine; MMF, mycophenolate mofetil; AAT, alpha-1-antitrypsin; OR, oral retinoids; TT, topical treatment (moisturizers, topical corticosteroids, topical calcineurin

inhibitors); IVIG, IntraVenous ImmunoGlobulin; CTT, cultured thymus tissue; ThT Thymic transplant.

Giancotta et al. 10.3389/fped.2023.1129249
2.1.5. CARD11
CARD11 is a multidomain scaffold protein needed to induce

NF-kB, JNK, and mTOR following antigen receptor stimulation.

Germline CARD11 mutations are mainly associated to three

different IEIs: CARD11 deficiency, B cell expansion with NF-kB

and T cell anergy (BENTA) and CARD11-associated Atopy with

Dominant Interference of NF-kB Signalling (CADINS). CADINS

is due to heterozygous LOF dominant negative variants of the

gene. Many mutations associated with CADINS also downregulate

TCR-mediated mTORC1 activation, probably due to a reduction

in the glutamine uptake. TCR signaling abnormalities cause an

impaired T cell proliferation/activation, an increase of Th2

cytokines and a decreased of Th1 cytokines production. Clinically,

patients with CADINS usually present early onset atopy (AD,

asthma, food allergies, and eosinophilic esophagitis), recurrent

viral skin and respiratory tract infections (35). In a recent single

center cohort study, AD and skin infections ameliorated or even

resolved during adolescence, suggesting a spontaneous

dermatological improvement over time (36).

Glutamine is involved in immunomodulatory functions, but its

impact on regulating T-cell function is still unclear (37). In infants

with low birth weight and atopy, glutamine supplementation has

been studied with a promising reduction in AD (38). CARD11

mutations prevent the upregulation of the glutamine transporter

ASCT2 and mTORC1 activating cell proliferation, thus glutamine

supplementation has been proposed to improve atopic

manifestations in CARD11 or related genes mutations.

Interestingly, amino acid supplementation could modulate the

immune metabolism and also improve AD (39).The Th2/Th1

imbalance in CARD11 deficient patients indicates that dupilumab

might be useful in controlling AD. Case reports of CADINS

patients with severe AD successfully treated with dupilumab,

without side effects, have been described (40–42).
2.1.6. CARD14
CARD14 induces the NF-κB and mitogen-activated protein

kinase (MAPK or MAP kinase) signaling through BCL10 and

MALT1, upregulating pro-inflammatory genes. While

upregulation of CARD14 gives a skin picture overlapping with
Frontiers in Pediatrics 05
psoriasis (43) and atypical juvenile pityriasis rubra pilaris (44,

45), its downregulation is associated with AD, increased risk of

skin infection and also dysregulating cutaneous inflammation.

Dominant LOF mutations in CARD14 are associated with severe

AD, impaired NF-kB cascade, and dysregulation of innate

immunity mediators involved in AD pathogenesis (46). The

upregulation of CARD14 lead to excessive expression of NF-kB-

responsive genes and initiate the recruitment of the inflammatory

cells, including dendritic cells and T cells producing IL-23 and

IL-17/IL-22 respectively (47). In line with this, ustekinumab, an

inhibitor that targets both IL-12 and IL-23 cytokines, proved to

be a successful treatment in an increasing numbers of patients

with CARD14 GOF mutations (45, 48–51). Since the role of

CARD14 in both AD and psoriatic diseases, targeted therapies in

these patients need to be considered with caution. To our

knowledge, there are no clinical reports on the application of

targeted therapy in patients with CARD14 LOF mutations.
2.2. Skin barrier dysfunction

2.2.1. SPINK5
The Comèl-Netherton syndrome (NS) is an inherited disease

due to biallelic mutations in the serine protease inhibitor Kazal-

type 5 (SPINK5) gene, encoding for inhibitor lympho-epithelial

Kazal-type-related inhibitor (LEKTI) that regulates many

proteolytic events including the cleavage of desmosomal

connections (52). SPINK5 is necessary to maintain skin barrier

integrity. In fact, LEKTI deficiency results in defective barrier

function (1). NS patients may present with erythroderma or

ichthyosis linearis circumflexa as well as typical hair anomalies

called trichorhexis nodosa (bamboo hair) (53). Skin and hair

defects persist over time, but the disorder usually ameliorates

with age (52). The mortality rate is high in the first years of life

due to potentially fatal complications (54). In NS epidermidis,

the exaggerated protease activity causes the overexpression of

proinflammatory, and proallergic cytokines. These molecules

drive Th2 cytokine production and lead to atopy and elevated

IgE level (55, 56). The IL-17/IL-23 pathway was found to be a
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predominant signaling axis in NS (57). Recently, 2 endotypes of NS

are distinguished on the basis of multiomics analysis: NS with

typical ichthyosis linearis circumflexa (NS-ILC) and scaly

erythroderma (NS-SE). In NS-ILC, a Th2- complement driven

immune response was observed with neutrophil infiltration and

complement activation. In NS-SE, a type I IFNγ-driven

inflammatory axis appeared prevalent (58).

Conventional treatments include skin care along with

supportive care. These interventions can improve cutaneous

symptoms without restoring the skin integrity entirely. The use

of low-potency corticosteroids, as well as topical calcineurin

inhibitors, have shown beneficial effects in some patients (55)

but, due to the barrier defect, significant cutaneous absorption

cannot be ensured. Over the years, several groups described a

significant improvement of the cutaneous signs and symptoms in

NS children treated with monthly IVIG (59–64). It was

hypothesized that IVIG treatment in NS patients decrease the

inflammation by downregulating type 17 inflammation and

restoring immune homeostasis (65). Therefore, a trial of IVIG

may be considered in severe NS patients.

The administration of kallikrein inhibitors consists of a protein

replacement therapy and would be a more etiological treatment. It

appears to ameliorate symptoms of NS in animal models (66) and

promising results have been observed also in humans (67).

Gene therapy using a lentiviral vector encoding the SPINK5

gene is under investigation (68, 69). A recent trial proposed

grafting autologous epidermal sheets derived from genetically

modified skin stem cells to release LEKTI protein in NS patients.

Results are still not available (70).

Several case reports showed a clinical improvement in adults

and children treated with dupilumab (66, 71–73). Currently, a

randomized clinical trial evaluating the efficacy and safety of

dupilumab in NS patients is under recruitment (74).

Omalizumab administration reduced skin and mucosal

symptoms in a 20-year-old patient with NS (75).

A significant skin improvement was shown in a young adult with

NS who received ustekinumab (57). Furthermore, promising results

came from the use of monoclonal antibodies against IL- 17 called

ixekizumab and secukinumab, TNF-α inhibitors (eg, infliximab)

and anakinra to control the inflammatory skin lesions in NS (65,

76–78). The different therapeutic responses observed after

inhibition of the IL-17 axis suggest that different pathways may

contribute to NS pathogenesis (79). Finally, the recent discovery of

two NS endotypes could inform new therapeutic approaches (58).
3. Other genes

Filaggrin, a filament-aggregating protein (FLG) is a key protein

of the stratum corneum. LOF FLG mutations or mutations causing

a decrease in FLG copy number are strongly associated with AD

confirming its fundamental function for epidermal barrier

integrity (80). Recently, LOF variants in the FLG gene has been

recognized as a risk factor for the onset of severe manifestations

of food allergy (81). FLG replacement treatment studies in

murine models evidenced beneficial effects (82–84).
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Desmoglein 1 (DSG1) protein belongs to the family of

cadherins. Biallelic LOF mutations in DSG1 gene cause severe

dermatitis, multiple allergies and metabolic wasting (SAM) and

can manifest as ichthyosiform erythroderma at birth (85). Based

on an IL-17–skewed inflammatory signature revealed in these

patients, the use of anti IL-17 A antibody and an IL-12/IL-23

antagonist have been proposed with promising results (86, 87).

Corneodesmosin (CDSN) is necessary for cell adhesion and skin

integrity. Its expression is reduced in AD patients (88). Peeling skin

syndrome (PSS) type B is a rare autosomal recessive disease caused

by mutations in the CDSN gene. It is characterized by congenital

ichthyosiform erythroderma and skin exfoliation along with

elevated serum IgE. The use of antihistamines and kallikrein

inhibitors have been proposed based upon the observation in vitro

that histamine attenuates the expression of desmosomal proteins

in human keratinocytes, and kallikreins are upregulated in type

B PSS (89). Recently, in vitro studies for a protein replacement

therapy in PSS patients showed encouraging results (90).
3.1. Mast cell deregulation

Germline mutations in two different genes called PLCG2 and

ADGRE2 which encode for Phospholipase C gamma 2 and

Adhesion protein-coupled receptor E2 respectively, are associated

with a type of urticaria triggered by cold and vibration. Mutations

in the PLCG2 gene are associated to PLCG2-associated antibody

deficiency and immune dysregulation (PLAID) and to auto

inflammation and PLCG2-associated antibody deficiency with

immune dysregulation (APLAID) syndrome. PLAID syndrome is

characterized by early-onset cold urticaria, antibody deficiency,

recurrent infections, autoimmune disease and symptomatic allergic

disease (91–93). Patients with PLAID, when possible, should avoid

cold triggers. Systemic corticosteroids seem to improve symptoms

and partially control the disease. In addition, the use of other drugs

such as antihistamines, omalizumab, dapsone, and

hydroxychloroquine shows improvement in skin symptoms (94). As

a future option, the use of specific inhibitors to normalize PLCG2

function at body temperature and to avoid uncontrolled activation

at cold exposure has been proposed, but no data are available (92).
3.2. Metabolic disturbance

Hypomorphic phosphoglucomutase 3 (PGM3) mutations with

autosomal recessive transmission cause abnormal protein

glycosylation and differences in the cellular metabolism. The

clinical presentation is characterized by high serum IgE, atopy,

neurological impairment, immunodeficiency and autoimmunity

(95). In fact, it was demonstrated that altered glycosylation due

to PGM deficiency may also affect a subset of lymphocytes (96, 97).

Substrate supplementation therapies for the defective

glycosylation pathway have been proposed for several congenital

disorders (98). As future therapy perspectives, a trial administering

N-acetylglucosamine and uridine oral supplementation to patients

with PGM3 deficiency is still on going (99).
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HSCT is known to be a curative treatment for most

immunodeficiencies, but data in these conditions are limited.

Two out of three children described by Pedersen et al. were

successfully transplanted, while the other patient died due to

infectious complications before transplantation (97).
3.3. T cell repertoire restriction

Omennsyndrome(Os) is anatypical presentationof severe combined

immunodeficiency (SCID) with early-onset severe erythroderma and

eczema, alopecia, lymphadenopathy, hepatosplenomegaly, chronic

persistent diarrhea, recurrent infection and growth failure.

Many genetic defects responsible for TCR over activation can

cause uncontrolled lymphocyte expansion and subsequently

lymphocyte peripheral infiltration in various tissues including skin,

causing tissue damage. Expansion of T-cell clones in Os is

associated to Th2 differentiation, Th2 cytokines production, high

levels of IgE and eosinophilia. Histological findings in erythroderma

of Os are analogous to those described in severe AD. The

mechanisms underlying the immunological alterations responsible

for the atopic features observed in Os are still a matter of debate.

Lymphopenia-induced homeostatic proliferation, poor thymic

control of autoreactive lymphocytes, defective Treg and Th2 skewed

response have been reported (100).

Since Os is fatal in early life, HSCT represents the first line

therapy (101).

In these patients, immunosuppressive treatments such as

cyclosporine and steroids are administered as bridging therapy pending

HSCT. Cyclosporin, compared to steroids, can modulate T-cell

functions at low concentrations, with a consequent control of immune

reactivity and skin improvement (102). Finally, immunosuppression

provides control of self-reactive T cells but it is often associated to side

effects (103, 104). Targeted therapies downregulating Th2 response are

considered as new and safe candidates for Os management. Recently,

an in vitro model with Os CD4+ T cells showed only a mild reduction

of IL-4 production after dupilumab treatment vs. control (105). This

could suggest that Th2 polarized response in Os patients might not be

regulated by IL-4 signaling only.

Autologous stem-cell-based gene therapy represents the new

therapeutic option to treat Os patients without suitable donors.

Murine models with RAG mutations treated with lentivirus-

mediated gene therapy showed both immunological and clinical

improvement, with a dramatic increase in naïve T cells and

reduction in effector/memory T cells, and a decrease in cellular

infiltration in the skin (106, 107). Currently, preclinical studies are

on going to implement transgene expression and obtain stable

immune reconstitution (108, 109).
3.4. Cytokine signaling defects

3.4.1. STAT3
The prototypic hyper-immunoglobulin E syndrome (HIES) is

caused by LOF autosomal dominant mutations in the signal

transducer and activator of transcription 3 (STAT3).
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STAT3 activity is essential in several immunological functions

including differentiation of Th17 lymphocytes. STAT3 is a

transcription factor modulating expression of various genes

including cytokines involved in multiple pathways such as IL-6,

IL-21, IL-10, IL-11, IL-22, and IL-23. This aberrant

immunological transduction explains the various manifestations

involving multiple organs and systems, including eczema, lung

disease, skeletal and connective tissue abnormalities and

vasculopathy. Indeed, the infectious phenotype in patients with

STAT3 deficiency is characterized by recurrent staphylococcal

skin infections, recurrent bacterial pneumonia and chronic

mucocutaneous candidiasis. Interestingly, despite high IgE levels,

patients have low rates of allergy and anaphylaxis due to lower

affinity of IgE for allergens (110). The skin involvement differs

from common AD for early onset and other characteristic signs,

such as hyperkeratosis of facial skin, retro auricular fissures, and

severe folliculitis (111).

STAT3-deficient patients benefit antibiotic prophylaxis to

prevent both dermatological and pulmonary infection. Antifungal

prophylaxis should be considered in patients with structural

airway abnormalities (110). IVIG replacement showed a decrease

in frequency of bacterial pneumonia and can be considered to

prevent recurrent lung infection (112).

Published data on HSCT in STAT3 patients are limited and

controversial. In the past years results were not encouraging,

with reports of transplant failure and death (113–115).

However, recent case series and follow-up studies

demonstrated clinical improvement in terms of skin and

pulmonary symptoms and immunological reconstitution after

HSCT (116, 117).

Conventional therapy for skin manifestations includes topical

and systemic immunosuppressive drugs such as steroid,

tacrolimus, and cyclosporine. Given the increased IL-4 expression

observed in patients with dominant negative STAT3 mutations, it

was supposed that dupilumab might treat some clinical

manifestations (118). Many reports confirmed the success of the

treatment with substantial improvement of the cutaneous lesions,

pruritus and IgE levels (118–121).

Omalizumab demonstrated its efficacy in many immune-

mediated and autoimmune skin disorders, although its role in

HIES is still being defined. Several case reports described its use

in STAT3 deficient patients with successfully improvement of

skin symptoms and a decrease of serum IgE during treatment

(26, 122, 123). Some clinical experience also reported an

improvement of pulmonary manifestations (124, 125).

Omalizumab was also used in combination with co-trimoxazole

and inhaled tobramycin with no recurrent pulmonary or skin

infection and a considerable improvement in skin lesions (126).

3.4.2. ZNF341
Patients with Zinc Finger Protein 431 (ZNF341) deficiency

phenotypically overlap with STAT3 deficiency. However, patients

with ZNF341 deficiency are characterized by less severe non-

hematopoietic phenotypes and more severe inflammatory

manifestations compared to STAT3 deficiency (118). Patients

with increased radiosensitivity and subsequent increased risk of
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malignancy are reported (127). Furthermore, ZNF341 deficiency

seems to influence several immune cells including monocytes

and NK lymphocytes, which could contribute in the generation

of atopic eczema.

It was reported significantly clinical improvement and reduced

IgE level in a ZNF341 deficient adult patient with severe AD

following dupilumab administration (128)..

3.4.3. TYK2
Tyrosine kinase 2 (TYK2) enzyme is a member of JAK family

and is implicated in the signal transduction of many cytokines

including IFN-α, IL-10, IL-6 and IL-12. TYK2 deficiency was

discovered in patients with autosomal recessive (AR) HIES.

Interestingly, unlike the first patient reported, the HIES

phenotype was not found by the other seven patients with TYK2

deficiency described so far (129). However, it seems that various

mutation types may influence the expression of TYK2 and

promote Th2 cell differentiation, resulting in increased

production of Th2 cytokines (130).
4. Novel genes associated with
cytokine signaling defects

Since the advent of NGS, a growing number of mutations

associated with cytokine signaling defects are being identified but

data on targeted therapy are not yet available (131–133).

STAT5 is essential for mast cell cytokines production,

proliferation and survival. The role of STAT5B in the IgE-

mediated mast cell function has been confirmed in murine

models (134).

STAT6 mediates the pathway of IL-4 and a hyperactive STAT6

signaling may alters many cellular processes including increased

Th2 differentiation, Th2 cytokines production, elevated IgE

levels, increased expression of receptor CD23 on B cells,

recruitment of eosinophils and mast cells. This immune

dysregulation causes allergic inflammation, asthma and AD

(135). Two recent papers identified heterozygous GOF variants

in STAT6 characterized by early onset al.lergic phenotype,

refractory AD, hyper eosinophilia, high levels of IgE and vascular

anomalies of the brain (136, 137). Since the involvement of the

IL-4 axis was demonstrated, the use of dupilumab could be a

valid therapeutic option. One of the patients reported is currently

treated with dupilumab with good clinical outcome. Moreover,

the authors demonstrated that in vitro JAK inhibition through

ruxolitinib and tofacitinib effectively contained the increased

STAT6 phosphorylation in cells expressing the STAT6 variants,

proposing JAK inhibitors as a valid therapeutic approach in

patients with GOF STAT6 variants (136).

Variants in genes encoding the transforming growth factor β

(TGFβ) receptor, cause Loeys–Dietz syndrome (LDS), a rare

connective tissue disorder that affects the heart, blood vessels,

eyes, and skeletal system. Recently, an allergic phenotype

characterized by asthma, food allergy, allergic rhinitis and atopic

eczema, has been described (138). LDS mutations appear to lead

lymphocytes to acquire and/or maintain Th2 effector functions.
Frontiers in Pediatrics 08
It was demonstrated that patients with mutations in TGFβ

showed raised levels of IgE and mild reduced IL-17 cytokine

production (139).

ERBB2-interacting protein (ERBIN) is necessary for TGF-β

pathway activation and its expression is related to STAT3 signaling.

In fact, reduced ERBIN expression was described in patients with

STAT3 mutations. A LOF ERBIN mutation was recently reported

causing Treg and Th2 polarization and a pathological phenotype

overlapping with LDS and STAT3-HIES (140).

Many variants of the Interleukin 6 Signal Transducer (IL6ST)

gene associated with a severe AR HIES have been identified

(141). Indeed, IL6ST gene encodes for a co-receptor of IL-6

called GP130, which transduces the STAT3 pathway (142).

Despite clinical phenotype similarities, unlike STAT3 deficiency,

AR IL-6R deficiency does not show skeletal involvement (143).

7. Regulatory T Cell DefectsIPEX syndrome is an X-linked

autoimmune disease caused by mutations in forkhead box P3

(FOXP3) gene. The clinical phenotype mainly includes immune

dysregulation, polyendocrinopathy and enteropathy (144).

FOXP3 protein is implicated in the regulation and function of

Treg cells, which mediates the suppression of autoreactive T cells

(145). Impaired FOXP3 expression leads to a Th2-skewed

predominance. Skin involvement in IPEX syndrome is

heterogeneous and can include eczematous, psoriasiform, and

ichthyosiform lesions, intermittent urticaria, alopecia universalis,

onychodystrophy and pemphigoid lesions.

Currently, allogeneic HSCT is the best treatment option and

should be performed before organ damage develops. Long-term

follow-up reports a 10-year survival of 72,8% after HSCT (146).

Immunosuppressive therapy is usually administrated after

transplantation. Cyclosporine A, sirolimus and tacrolimus, or

steroids are the most used agents. Rapamycin demonstrated to

restore Treg cell function in IPEX syndrome, improving their

suppression ability (147). It was demonstrated that

immunosuppressive therapies alone do not impact the disease

progression, and are associated with reduced life expectancy (148).

Recently, for the first time an IPEX patient with diffuse eczema

was successfully treated with dupilumab. In this case, patient’s

dermatitis and itching persisted without improvement despite the

HSCT and immune suppressive drugs (149).

Human T cells generated by viral transduction of a

transcription unit encoding FOXP3, expressed a regulatory T

phenotype in vitro (150) and could represent a novel therapeutic

approach to modulate immune responses in the setting of

allergy, autoimmunity, and immunodeficiencies. Initial trials of

Treg-based cell therapy for IPEX syndrome are already tested in

vitro and in animal models with promising results, but

limitations are mainly related to the lifespan of the CD4 + T cells

expressing wild-type FOXP3 (151).
5. Discussion

In the last decade, the rapid evolution of knowledge in the

diagnosis and treatment of IEIs and the recognition of atopic

disorders as a frequent feature have improved our knowledge of
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IEIs-A. Chronic skin disease is one of the main clinical

manifestations in IEIs-As, and may manifest with eczema,

erythroderma and urticaria. In particular, eczema is the most

frequent manifestation and it is reported in 13%–22% of IEIs

patients (152, 153).
FIGURE 1

Warning signs for IEIs-A.

FIGURE 2

Proposed biologics in IEIs-A with skin involvement.
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In most cases, the skin involvement is similar to that found in

non-immunocompromised patients, but when observed in IEIs-As,

it tends to have an earlier onset, great severity, and possible

complications such as infection. Another features of eczema in

patients with IEIs-A is their unresponsiveness to conventional
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treatment that traditionally includes moisturizers, topical

corticosteroids, and calcineurin inhibitors (152).

Figure 1 summarizes the warning signs that may guide to the

diagnosis of IEIs-A.

Continual improvements and accessibility of genetic analysis

have helped to identify new IEIs-A diseases and to detect the

intracellular pathway involved, allowing the possibility of

precision therapy (154) (Figure 2). The goal of the tailored

therapy is to use therapeutic agents to modulate dysfunctional

pathways (155). Clinical evalutations to consider before starting

biologic drugs are summarized in Figure 3.

Recently, biologics became an interesting and promising option

to treat refractory AD. Since 2020 dupilumab represents the first

option among systemic therapies, and many randomized clinical

trials have proven its safety and efficacy in both children and

adolescents with AD (155–158).

Dupilumab is the most studied biological drug so far. It binds

IL-4Rα inhibiting the IL-13/IL-4/STAT6 axis that includes

cytokines with a crucial role in the pathogenesis of AD. In the

context of IEIs-A, dupilumab has been used in many models

with a Th2-skewed immune response with successful results

(128). An increasing number of severe eczema treated with

dupilumab IEIs-A patients are being reported in the literature

(120, 159–161) and a recovery of Th1 polarization after its use is

described in many cases (120).

The major advantage in treating immunocompromised

patients with dupilumab is its safety profile as it does not

cause further immunosuppression (162). In addition, it may

be used as a bridge treatment in patients waiting for HSCT,

in order to control skin infectious and inflammatory

complications.

Omalizumab is currently approved for allergic asthma and

chronic spontaneous urticaria. Its use in severe pediatric AD

has been tested in a randomized clinical trial concluding that

omalizumab is a treatment option for difficult-to-manage

severe eczema in children with atopy (163). Omalizumab

application in IEIs-A is limited to case reports or single

clinical experience in particular in HIES with concomitant

respiratory manifestations, but this application is still debated

(63, 163–166).
FIGURE 3

When to candidate for biologic treatment?
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In different forms of congenital ichthyosis the use of anti IL-17

A antibody and an IL-12/IL-23 antagonist have been proposed with

promising results, based on an IL-17–skewed inflammatory

signature revealed in these patients (86, 87).

In last years, many drugs involving different pathways are

being studied to manage moderate and severe AD. All of the

conventional treatments (steroid, cyclosporine, tacrolimus and

dupilumab) inhibit the IL-13/IL-4-JAK-STAT6/STAT3 axis and

the subsequent production of IL-13/IL-4 cytokines. Therefore,

targeting this pathway would be a promising strategy also to

develop new biologics for AD (167).

The rationale for the use of JAK inhibitors in AD is its role in

controlling the transduction of the JAK-STAT signaling for Th2

cytokines. In the context of IEIs-A its use should be evaluated in

selected cases where the axis is upregulated (167).

Clinical trials of new biologics for AD, already used in other

diseases, include those targeting IL-13, IL-31RA, IL-33, OX40

and IL-22 (168). Their mechanism and phase of study are

summarized in Table 2.

Targeted therapy advantages are related with its high

specificity for one or few molecules, and therefore with its low

toxicity compared to other systemic therapy for AD. This

approach could be translated in IEIs-A with skin involvement

in which such pathways are also affected. IEIs-A include a wide

variety of diseases with different severity and prognosis and

HSCT is the therapy of choice in a large number of these

disorders, for which this treatment is potentially curative. In

IEIs-A with immunodeficiency requiring HSCT, the use of

biologics should not delay timing of transplantation. Indeed,

biologics have proved to be effective in modulating an altered

pathway and relieving symptoms but do not represnet a

definitive therapy in immunodeficiencies. Rare diseases such as

IEIs are inherently difficult to study in well-controlled clinical

trials and therefore need a multidisciplinary management

involving clinical immunologists and dermatologists to perform

correct diagnosis and appropriate therapy in order to improve

patient outcomes.
6. Conclusions

IEIs management is challenging but still affordable when a

prompt diagnosis and an appropriate treatment are established.

A diagnostic delay of IEIs is historically reported due to the

variability of clinical phenotype and their rarity. However, the

increasing availability of NGS technology together with recent

research advances in IEIs and IEIs-A have improved the early

diagnosis and optimized the treatment of these conditions. The

speed, accuracy, and sensitivity of molecular analysis is crucial in

the era of precision medicine based on a person’s disease-driving

molecular alterations. Biologics have the great advantage to act

on a targeted component of immune system and they are

becoming increasingly effective and safe for the therapeutic

approach of many skin diseases.

There is an essential lack of knowledge about the efficacy of

biologics in IEIs-A and only limited case reports describing their
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TABLE 2 Biological therapies for AD.

Tailored
therapy

Inhibition target ClinicalTrials.gov Age Phases Result Approvation

Dupilumab IL-4Rα Liberty AD PRESCHOOL ≥6 m and
<6 y

2 skin improvement FDA for adults with moderate-to-severe AD (2017)
(169)

NCT02612454 ≥6 m and
<18 y

3 NA EU for adolescents with moderate-to-severe AD
(2019) (170)

RAD 2021 6–11 y 3 NA FDA for children 6 to 11 y with moderate-to-severe
AD (2020) (171)

Omalizumab IgE receptor AMB-WEI-1052-I 18–70 y 2 NA

OXAD 4–25 y 1 skin improvement

ADAPT 4–19 y 4 skin improvement

NCT00822783 12–60 y 4 NA

Mepolizumab IL-5 NCT03055195 ≥18 y 2 not skin improvement

Tralokinumab IL-13Ra1, Ra2 ECZYTA 1 ≥18 y 2 skin improvement

ECZTRA 2 ≥18 y 3 skin improvement

Lebrikizumab IL-13 ADvocate1, ADvocate2 ≥12 y 2 skin improvement

Nemolizumab IL-31Ra NCT03989349 ≥12 y 3 itch improvement Japan for adolescents ≥ 13 y with itch associated
with AD (2022) (172)NCT03985943 ≥12 y 3 itch improvement

NCT03100344 ≥18 y 2 itch improvement

NCT05056779 ≥18 y 3 skin and itch
improvement

NCT03989206 ≥12 y 3 skin and itch
improvement

NCT01986933 18–65 y 2 itch improvement

NCT03921411 12–17 y 2 not concluded

NCT04921345 7–11 y 2 Recruiting

REGN3500 IL-33 NCT03736967 18–75 y 2 skin improvement

NCT03738423 18–75 y 2 skin improvement

Fezakinumab IL-22 NCT01941537 18–75 y 2 skin improvement

Tezepelumab TSLP NCT03809663 18–75 y 2 skin improvement

MOR106 IL-17 IGUANA 18–65 y 2 NA

Secukinumab IL-17 NCT03568136 ≥18 y 2 skin improvement

NCT02594098 18–85 y 2 NA

Ustekinumab Il-12, IL-23 NCT01945086 20–65 y 2 not significant skin improvement

NCT01806662 18–75 y 2 not significant skin improvement

oral JAK inhibitor

Upadacitinib JAK1 AD Up 12–75 y 3 skin improvement

Measure Up 1 12–75 y 3 skin improvement

Measure Up 2 12–75 y 3 skin improvement

Rising Up 12–75 y 3 NA

NCT02925117 18–75 y 2 skin improvement

Abrocitinib JAK1 JADE MONO-1 ≥12 y 3 skin improvement Japan for adults and adolecents with moderate-to-
severe AD (173)

JADE EXTEND ≥12 y 3 NA EU for adults with moderate-to-severe AD (174)

JADE MONO-2 ≥12 y 3 skin improvement

JADE Compare ≥18 y 3 skin improvement

JADE TEEN 12–17 y 3 NA

Gusacitinib JAK, SYK RADIANT 18–75 y 2 NA

Baricitinb JAK1, 2 BREEZE-AD1, AD2, AD3,
AD4, AD7

≥18 y 3 skin improvement EU for adult with moderate-to-severe AD (2020)
(175)

NCT02576938 ≥18 y 2 skin improvement

NCT03952559 2–17 y 3 Recruiting

topical JAK inhibitor

Ruxolitinib JAK1, 2 TRuE AD1, AD2 ≥12 y 3 skin improvement FDA for adults with mild to moderate AD (176)

Tofacitinib JAK1, 2, 3 NCT02001181 18–60 y 2 skin improvement

Ifidancitinib JAK1, 3 NCT03585296 ≥18 y 2 skin improvement

Delgocitinib JAK1, 2, 3/Tyk2 JapicCTI-184064 ≥2 y 1 NA Japan for children with moderate to severe AD
(2020) (177)JAK1, 2, 3/Tyk2 DELTA 1 ≥18 y 3 skin improvement

JAK1, 2, 3/Tyk2 DELTA 2 ≥18 y 3 NA

JAK1, 2, 3/Tyk2 NCT03725722 ≥18 y 2 skin improvement

Brepocitinib JAK1/Tyk2 2018-003050-24 12–75 y 2 NA

NA, not available; y, years; m, months; Janus kinases (JAK) inhibitors; CSU, chronic spontaneous urticaria; FDA, Food and Drug Administration; EMA, European Medicines

Agency; EU, European Union.
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use in clinical practice are available. Long-term follow-up studies

need to assess the safety and persistence of efficacy of

each biologic.

More and larger international multicenter studies in this

special population are necessary to evaluate the clinical

profile of new drugs and to identify biological markers

which will help to select patients who may benefit from

tailored interventions.
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