505 research outputs found
Recommended from our members
Differential sensitivity of aerobic gram-positive and gram-negative microorganisms to 2,4,6-trinitrotoluene (TNT) leads to dissimilar growth and TNT transformation: Results of soil and pure culture studies
The effects of 2,4,6-trinitrotoluene (TNT) on indigenous soil populations and pure bacterial cultures were examined. The number of colony-forming units (CFU) appearing when TNT-contaminated soil was spread on 0.3% molasses plates decreased by 50% when the agar was amended with 67 {mu}g TNT mL{sup -1}, whereas a 99% reduction was observed when uncontaminated soil was plated. Furthermore, TNT-contaminated soil harbored a greater number of organisms able to grow on plates amended with greater than 10 {mu}g TNT mL{sup -1}. The percentage of gram-positive isolates was markedly less in TNT-contaminated soil (7%; 2 of 30) than in uncontaminated soil (61%; 20 of 33). Pseudomonas aeruginosa, Pseudomonas corrugate, Pseudomonasfluorescens and Alcaligenes xylosoxidans made up the majority of the gram-negative isolates from TNT-contaminated soil. Gram-positive isolates from both soils demonstrated marked growth inhibition when greater than 8-16 {mu}g TNT mL{sup -1} was present in the culture media. Most pure cultures of known aerobic gram-negative organisms readily degraded TNT and evidenced net consumption of reduced metabolites. However, pure cultures of aerobic gram-positive bacteria were sensitive to relatively low concentrations of TNT as indicated by the 50% reduction in growth and TNT transformation which was observed at approximately 10 {mu}g TNT mL{sup -1}. Most non-sporeforming gram-positive organisms incubated in molasses media amended with 80 {mu}g TNT mL{sup -1} or greater became unculturable, whereas all strains tested remained culturable when incubated in mineral media amended with 98 {mu}g TNT mL{sup -1}, indicating that TNT sensitivity is likely linked to cell growth. These results indicate that gram-negative organisms are most likely responsible for any TNT transformation in contaminated soil, due to their relative insensitivity to high TNT concentrations and their ability to transform TNT
An Enu Mutagenesis Screen For Dominant Genetic Modifiers Of Thrombosis In The Factor 5 Leiden Mouse
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106055/1/jth03031.pd
Ultrasonographic assessment of splenic volume at presentation and after anti-malarial therapy in children with malarial anaemia
Background: Splenic enlargement is a component of the host response to malaria and may also influence the genesis and progression of malarial anaemia. Few cross-sectional and no longitudinal studies have assessed the relationship between splenic volume measured ultrasonographically and haemoglobin concentrations in children with malaria.
Methods: Fifteen Papua New Guinean children with severe malarial anaemia (SMA; haemoglobin <50 g/L) and ten with moderate malarial anaemia (MMA; 51-99 g/L) were recruited. The SMA patients were given intramuscular artemether followed by oral artemisinin combination therapy (ACT), and were transfused one unit of packed cells 0.3-4.0 days post-admission. The MMA patients were treated with ACT. Splenic enlargement (Hackett's grade, subcostal distance and ultrasonographically determined volume) and haemoglobin concentrations were measured on days 0, 1, 2, 3, 7, 14, 28, and 42.
Results: Associations between Hackett's grade, subcostal distance and splenic volume were modest (r(s) = 0.90). Mean splenic volume had fallen by approximately 50 % at day 14 in children with MMA ( P = 0.30). There was no change in haemoglobin in the MMA group during follow-up but a rise in the SMA group to day 7 ( P <= 0.05 vs days 0, 1, 2, and 3) which paralleled the packed cell volume transfused.
Conclusions: Clinical assessment of splenomegaly is imprecise compared with ultrasonography. Serial splenic volumes and haemoglobin concentrations suggest that the spleen does not influence post-treatment haemoglobin, including after transfusion
New Lower Bound on Fermion Binding Energies
We derive a new lower bound for the ground state energy of N
fermions with total spin S in terms of binding energies of (N-1) fermions. Numerical examples are provided for some simple
short-range or confining potentials.Comment: 4 pages, 1 eps figur
High-precision B(E2) measurements of semi-magic Ni 58,60,62,64 by Coulomb excitation
High-precision reduced electric-quadrupole transition probabilities B(E2;01+→21+) have been measured from single-step Coulomb excitation of semi-magic Ni58,60,62,64 (Z=28) beams at 1.8 MeV per nucleon on a natural carbon target. The energy loss of the
Electromagnetic properties of the 21+ state in 134Te: Influence of core excitation on single-particle orbits beyond 132Sn
The g factor and B(E2) of the first excited 2+ state have been measured following Coulomb excitation of the neutron-rich semimagic nuclide 134Te (two protons outside 132Sn) produced as a radioactive beam. The precision achieved matches related g-factor m
Fertility, Living Arrangements, Care and Mobility
There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
- …