89 research outputs found

    Alternate phenotype–genotype selection for developing superior high-yielding irrigated rice lines

    Get PDF
    Increase grain yield potential is one of the most important objectives of any cereal crop breeding program. To efficiently develop superior rice lines by the introgression of favorable alleles for yield and yield component traits, a strategy of alternate phenotype–genotype selection was used. The present study aimed to (i) investigate the allelic diversity of loci associated with major yield-component traits and (ii) phenotype and genotype advanced populations derived from crosses between NERICA-L-20 and Giza178 for yield component traits using agro-morphological descriptors and GRiSP polymorphic markers to select superior high-yielding rice lines. A total of 100 F2:3 progeny were selected from 1000 F2 plants and genotyped with 16 polymorphic markers linked to four major yield- component traits. Four promising F2:3 lines (ARS 563–14, ARS 563–62, ARS 563–286, and ARS 563–41) bearing combinations of desirable alleles were selected. A selected set of 20 F2:4 lines showed moderate to high heritability for all target traits. Fourteen F2:5 lines derived from ARS 563–14 and 17 F2:5 from ARS 563–286 families were evaluated in preliminary trials to estimate yield gain. The three top lines, ARS 563–286–16-1-1, ARS 563–286–5-1-1, and ARS 563–14–10-1-1, showed an increase of more than 10% grain yield over the best check, Sahel 108, which is widely cultivated in the Senegal River valley. The 16 markers linked to the target yield component traits can be used to fast-track breeding programs targeting rice productivity

    Rice Fields Chemical and Physical Properties and the Implications on Breeding Strategie

    Get PDF
    Soil related constraints are major limiting factors in crop production in the Sahel. The objective of this study was to assess the properties of farmer's fields soil and irrigation water in Niger and the implications in rice improvement. Composite soil samples were collected from irrigated and non-irrigated fields. Sample of irrigation water was also collected. Physical and chemical analyses were performed in the laboratory. The results showed that most of rice fields were clayey and the non irrigated ones were mostly sandy. The soils were acidic and saline, the electrical conductivity ranged from 2.2 to 16.5 decisiemens per meter. The T-test showed that total dissolved salt, sodium adsorption ratio, cation exchange capacity, and organic matter percentage were significantly higher in irrigated fields than non-irrigated fields. The irrigated soils pH varied from 3.2 to 6.8, the electrical conductivity was greater than 4, and the sodium adsorption ratio was below 13 while the exchangeable sodium percentage was below 15. The irrigation water samples varied in term of ion content from site to site. The total sodium quantity estimated to be deposited varied from 87 kg/ha/year to 218 kg/ha/year. Rice fields' soils are saline and are getting worsened by irrigation water that contains salt. Therefore, the development of rice varieties that could withstand osmotic and ionic salt stress is necessary for sustainable production in the Sahel ecozone

    Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’

    Get PDF
    Open Access Article; Published online: 13 Sep 2020Salt stress is a menace to rice production and a threat to food security worldwide. We evaluated 308 F4 families from Sahel 317/Madina Koyo for tolerance to salt stress at the early seedling stage. To better understand genomic regions controlling tolerance in the population, we genotyped the progenies and the two parents using single nucleotide polymorphism (SNP) markers and regressed the genotypic data on their phenotype to detect QTLs. An average reduction of 63.4% was observed for all fitness-related traits among the F4 families. A total of 46 progenies recorded an average salt injury score (SIS) between 1–3 and were rated as tolerant to salt stress at the early seedling stage. A high-density genetic map was constructed for the 12 rice chromosomes using 3698 SNP markers. Multiple interval mapping identified 13 QTLs for SIS, shoot length, shoot dry weight and root length on chromosomes 2, 3, 4, 6, 7, 10 and 12, with trait increasing alleles coming from both parents. Two (qSDW2 and qRL2.2) and three (qSL2, qRL2.1 and qSIS2) QTLs at different regions on chromosome 2 and another two on chromosome 7 (qSDW7 and qSL7) were tightly linked. These QTLs could facilitate breeding for salt tolerance at the early seedling stage as direct selection for one, would mean indirectly selecting for the other. Fine mapping of these novel QTLs in a different genetic background is necessary to confirm their stability and usefulness in breeding for tolerance to salinity in rice

    Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley

    Get PDF
    Study region: Reference evapotranspiration (ETo) plays a key role in irrigation sys-tems design, water management under irrigated and rainfed production. Underthe sahelian conditions in the Senegal River Valley that receives less than 300 mmannual rainfall, rice crop water use should be estimated for the sustainability of theresource. Study focus: However the Penman–Monteith (PM) equation is revealed the mostaccurate one; it necessitates several climatic parameters that are not always avail-able mostly in the developing countries. The objective of this study was to evaluatethe performance of 16 ETo equations against the ASCE-PM equation under thesahelian conditions at Ndiaye and Fanaye (Senegal) for alternate equation forETo estimation with less climatic parameters. The results showed that the Har-greaves, modified Hargreaves, Ravazzani and Tralkovic equations systematicallyoverestimated ETo with the highest percentage error of estimate (PE). In contrast,Makkink–Hansen, Oudin and Turc equations systematically underestimated ETo.Temperature based equations of Romenenko and Schendel performed relativelybetter at Fanaye with 5.5% and 9.6% PE, fitting slopes of 0.92 and 1.05, and meanratio (MR) of 1.00 and 1.14, respectively. Mass transfer equations of Trabert andMahringer also had good performance compared to the Penman–Monteith equa-tion. New hydrological insights for the region: Overall, Valiantzas, Trabert, Romanenko,Schendel and Mahringer equations were the promising equations that could be usedfor reference evapotranspiration estimation in the Senegal River Valley

    Suitable management options to improve the productivity of rice cultivars under salinity stress

    Get PDF
    Growing rice in saline soils by minimizing damage on growth and yield remains a challenge. We conducted field experiments in the Africa Rice research field located in the Senegal River delta (16° 11ʹ N, 16° 15ʹ W) to study the effects of three management options of fertilization e.g. (i) nitrogen, phosphorus, and potassium fertilization: NPK; (ii) NPK combined with zinc: NPK-Zn, and (iii) NPK combined with gypsum: NPK-gypsum on the soil salinity level, the nutrient uptake and the productivity of different rice cultivars. The whole objective of this study is to determine how zinc or gypsum associated to NPK fertilizer can improve the growth and productivity of rice crop in saline soil. Results showed that the initial soil salinity level was reduced rapidly in plots treated with gypsum. The leaf-K/Na ratio, agronomic nitrogen use efficiency (ANUE), and grain yield of rice cultivars under the salinity stress were improved by the NPK-gypsum and NPK-Zn options relatively to the NPK option, suggesting that NPK-gypsum and NPK-Zn are suitable management options in reducing adverse effect of low K/Na, low ANUE as well as to improve rice yield under salinity stress

    Caractérisation phénotypique et génétique du riz africain (Oryza glaberrima Steud) phenotypic and genetic characterization of african rice (oryza glaberrima steud)

    Get PDF
    The agronomic interest of African rice and the morphological similarities with other species, arouse the necessity to characterize African rice for recovery and conservation. The present study aims primarily to characterize phenotypically and genetically African rice for better exploitation in aid of rice producers and consumers. Indeed, the phenotypic characteristics of the rice accessions examined have been determined in two agronomics systems (upland and irrigated) carried out about 235 accessions of African rice; and afterwards, genetic characterization using a specific marker has been carried. At the end of the analyzes, with regard to the phenotypic characters, 22 O.sativa or interspecific accessions differing morphologically on several descriptors were identified. Genetically, out of 19 profiles revealed on a 935-bp band, 14 confirmed the phenotypic results. This study shows that 221 out of 235 accessions are O. glaberrima rice. These results show that the accessions of different species analyzed were confused during the collection. They also seems to validate the possibility of hybridization between the two rice species in peasant environment. The accessions characterized strengthen the conservation effort of African rice. This collection can be used for future studies, particularly with perspective to selection and running African rice with the possibility to establish a genetic model to facilitate the transfer of useful genes from O.glaberrima to O.sativa, while controlling the reproductive barrier. Thus, it will be easy to better exploit the genetic diversity of the African species of cultivated rice

    Physiological and genetic control of transpiration efficiency in African rice, Oryza glaberrima Steud

    Get PDF
    Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses. Our results reveal that higher transpiration efficiency is associated with transpiration restriction in African rice. Detailed measurements in a subset of highly contrasted genotypes in terms of biomass accumulation and transpiration confirmed these associations and suggested that root to shoot ratio played an important role in transpiration restriction. Genome wide association studies identified marker-trait associations for transpiration response to evaporative demand, transpiration efficiency, and its residuals, with links to genes involved in water transport and cell wall patterning. Our data suggest that root-shoot partitioning is an important component of transpiration restriction that has a positive effect on transpiration efficiency in African rice. Both traits are heritable and define targets for breeding rice with improved water use strategies.This work was supported by the Institut de Recherche pour le Développement, the CGIAR Research Program (CRP) on rice-agrifood systems (RICE, 2017-2022) and the Agence Nationale de la Recherche (grant ANR-17-MPGA-0011 to VV). Financial support by the Access to Research Infrastructures activity in the Horizon 2020 Programme of the EU (EPPN2020 Grant Agreement 731013) is gratefully acknowledged. PA was supported by a doctoral fellowship from the French Ministry of Higher Education. BEE was supported by the Centre National de la Recherche Scientifique et Technologique of Gabon. The authors acknowledge the IRD iTrop HPC (South Green Platform) at IRD Montpellier for providing HPC resources (https://bioinfo.ird.fr, http://www.southgreen.fr)

    Climate smart rice innovations to reduce the impact of climate change on the livelihood of value chain actors

    Get PDF
    Introduction Rice is a major source of nutrients, largely contributing to the food and nutrition security for millions of people in Africa although most countries still rely on huge imports to meet local demand. Extreme temperatures, drought, flooding, and high salinity are climate change related stresses that negatively affect rice yield and grain quality. Thus, tackling these constraints is a critical action to increasing rice self sufficiency in Cameroon and Africa in general. Methods The Africa Rice Center in partnership with the National Agricultural Research and Extension Services of its 28 member States operating within the framework of the Africa-wide Taskforces has developed, tested, validated, and are deploying breeding, agronomic and post-harvest approaches to mitigate the negative impacts of climate change on rice yield and quality in Africa. Results Breeding approaches have led to the development of drought, cold, submergence, stagnation flood, salinity, and anaerobic germination tolerant varieties that are also resistant or tolerant to biotic stresses. These have demonstrated better yields and grain quality under stressed conditions compared to counterparts lacking those specific traits. The system of rice intensification and alternate wetting and drying, mid-season drainage, smart-valleys approach for inland development, solar-powered irrigation system, no-till and rice straw mulching are agronomic approaches developed and these approaches have demonstrated significant increase in yield and grain quality compared to alternative approached under climate change stress conditions. Post-harvest approaches have focused on reducing grain breakages, chalkiness, mycotoxin contamination, insecticide and fungicide use, deforestation and value addition to broken rice and rice milling byproducts using environmentally friendly methods. Post-harvest innovations here include using improved rice parboiling fueled by rice husk, solar-powered hermetic storage systems, processing of fine broken rice into flour for porridges and bakery products and use of rice husk fan-assisted stoves for household cooking and the cottage processing industry. Conclusions and recommendations Although climate change is a serious threat to rice production affecting both yield and quality, African governments will have to implement policy measures that enhance the scaling and adoption of climate smart rice innovation developed by AfricaRice to mitigate the impact of climate change if they aspire to reduce rice imports

    Effects of Alternate Wetting and Drying Irrigation Regime and Nitrogen Fertilizer on Yield and Nitrogen Use Efficiency of Irrigated Rice in the Sahel

    Get PDF
    The objectives of this study were to investigate water saving strategies in the paddy field and to evaluate the performance of some of the newly released rice varieties. Field experiments were conducted at Fanaye in the Senegal River Valley during two rice growing seasons in 2015. Three irrigation regimes ((i) continuous flooding, (ii) trigging irrigation at soil matric potential (SMP) of 30 kPa, (iii) trigging irrigation at SMP of 60 kPa) were tested in an irrigated lowland rice field. Irrigation regimes (ii) and (iii) are alternate wetting and drying (AWD) cycles. Four inbred rice varieties (NERICA S-21, NERICA S-44, Sahel 210 and Sahel 222) and one hybrid rice (Hybrid AR032H) were evaluated under five nitrogen fertilizer rates (0, 50, 100, 150 and 200 kg N ha−1). The results showed that rice yield varied from 0.9 to 12 t ha−1. The maximum yield of 12 t ha−1 was achieved by NERICA S-21 under AWD 30 kPa at 150 kg N ha−1. The AWD irrigation management at 30 kPa resulted in increasing rice yield, rice water use and nitrogen use efficiency and reducing the irrigation applications by 27.3% in comparison with continuous flooding. AWD30 kPa could be adopted as a water saving technology for water productivity under paddy production in the Senegal River Middle Valley. Additional research should be conducted in the upper Valley, where soils are sandier and water is less available, for the sustainability and the adoption of the irrigation water saving practices across the entire Senegal River Valley
    • …
    corecore