1,205 research outputs found

    The omega meson at high temperatures

    Full text link
    The decays of the omega meson in a heat bath of thermally excited pions is studied within the framework of real-time thermal field theory using an appropriate effective Lagrangian. We show that the omega meson spectrum broadens considerably at temperatures T > 100 MeV, primarily because of omega pi -> pi pi reactions in the thermal environment.Comment: 7 pages, 2 figures; reference and paragraph added; version to appear in Phys. Lett.

    Actions of Camptothecin Derivatives on Larvae and Adults of the Arboviral Vector Aedes aegypti

    Get PDF
    Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and Onchocerca volvulus endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of Aedes aegypti were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility. We identified rubitecan (a synthetic derivative of camptothecin) as a hit compound that reduced A. aegypti larval motility. Both rubitecan and camptothecin displayed concentration dependent reduction in larval motility with estimated EC50 of 25.5 ± 5.0 ”M and 22.3 ± 5.4 ”M, respectively. We extended our investigation to adult mosquitoes and found that camptothecin increased lethality when delivered in a blood meal to A. aegypti adults at 100 ”M and 10 ”M, and completely blocked egg laying when fed at 100 ”M. Camptothecin and its derivatives are inhibitors of topoisomerase I, have known activity against several agricultural pests, and are also approved for the treatment of several cancers. Crucially, they can inhibit Zika virus replication in human cells, so there is potential for dual targeting of both the vector and an important arbovirus that it carries

    Examining Periodic Solar Wind Density Structures Observed in the SECCHI Heliospheric Imagers

    Full text link
    We present an analysis of small-scale, periodic, solar-wind density enhancements (length-scales as small as \approx 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence (2008) examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also non-turbulent periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper (2009) analyzed the {\alpha} to proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed.Comment: 15 pages, 12 figures. The final publication is available at http://www.springerlink.co

    Can cartilage loss be detected in knee osteoarthritis (OA) patients with 3–6 months' observation using advanced image analysis of 3T MRI?

    Get PDF
    SummaryPurposePrior investigations of magnetic resonance imaging (MRI) biomarkers of cartilage loss in knee osteoarthritis (OA) suggest that trials of interventions which affect this biomarker with adequate statistical power would require large clinical studies of 1–2 years duration. We hypothesized that smaller, shorter duration, “Proof of Concept” (PoC) studies might be achievable by: (1) selecting a population at high risk of rapid medial tibio-femoral (TF) progression, in conjunction with; (2) high-field MRI (3T), and; (3) using advanced image analysis. The primary outcome was the cartilage thickness in the central medial femur.MethodsMulti-centre, non-randomized, observational cohort study at four sites in the US. Eligible participants were females with knee pain, a body mass index (BMI)≄25kg/m2, symptomatic radiographic evidence of medial TF OA, and varus mal-alignment. The 29 participants had a mean age of 62 years, mean BMI of 36kg/m2, with eight index knees graded as Kellgren–Lawrence (K&L)=2 and 21 as K&L=3. Eligible participants had four MRI scans of one knee: two MRIs (1 week apart) were acquired as a baseline with follow-up MRI at 3 and 6 months. A trained operator, blind to time-point but not subject, manually segmented the cartilage from the Dual Echo Steady State water excitation MR images. Anatomically corresponding regions of interest were identified on each image by using a three-dimensional statistical shape model of the endosteal bone surface, and the cartilage thickness (with areas denuded of cartilage included as having zero thickness – ThCtAB) within each region was calculated. The percentage change from baseline at 3 and 6 months was assessed using a log-scale analysis of variance (ANOVA) model including baseline as a covariate. The primary outcome was the change in cartilage thickness within the aspect of central medial femoral condyle exposed within the meniscal window (w) during articulation, neglecting cartilage edges [nuclear (n)] (nwcMF·ThCtAB), with changes in other regions considered as secondary endpoints.ResultsAnatomical mal-alignment ranged from −1.9° to 6.3°, with mean 0.9°. With one exception, no changes in ThCtAB were detected at the 5% level for any of the regions of interest on the TF joint at 3 or 6 months of follow-up. The change in the primary variable (nwcMF·ThCtAB) from (mean) baseline at 3 months from the log-scale ANOVA model was −2.1% [95% confidence interval (CI) (−4.4%, +0.2%)]. The change over 6 months was 0.0% [95% CI (−2.7%, +2.8%)]. The 95% CI for the change from baseline did not include zero for the cartilage thickness within the meniscal window of the lateral tibia (wLT·ThCtAB) at 6 month follow-up (−1.5%, 95% CI [−2.9, −0.2]), but was not significant at the 5% level after correction for multiple comparisons.ConclusionsThe small inconsistent compartment changes, and the relatively high variabilities in cartilage thickness changes seen over time in this study, provide no additional confidence for a 3- or 6-month PoC study using a patient population selected on the basis of risk for rapid progression with the MRI acquisition and analyses employed

    Entanglement, Bell Inequalities and Decoherence in Particle Physics

    Full text link
    We demonstrate the relevance of entanglement, Bell inequalities and decoherence in particle physics. In particular, we study in detail the features of the ``strange'' K0Kˉ0K^0 \bar K^0 system as an example of entangled meson--antimeson systems. The analogies and differences to entangled spin--1/2 or photon systems are worked, the effects of a unitary time evolution of the meson system is demonstrated explicitly. After an introduction we present several types of Bell inequalities and show a remarkable connection to CP violation. We investigate the stability of entangled quantum systems pursuing the question how possible decoherence might arise due to the interaction of the system with its ``environment''. The decoherence is strikingly connected to the entanglement loss of common entanglement measures. Finally, some outlook of the field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids, 42. Internationale Universit\"atswochen f\"ur Theoretische Physik, Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in Physics, Springer Verlag, 45 page

    Lectures on Chiral Disorder in QCD

    Full text link
    I explain the concept that light quarks diffuse in the QCD vacuum following the spontaneous breakdown of chiral symmetry. I exploit the striking analogy to disordered electrons in metals, identifying, among others, the universal regime described by random matrix theory, diffusive regime described by chiral perturbation theory and the crossover between these two domains.Comment: Lectures given at the Cargese Summer School, August 6-18, 200

    G\"{o}del black hole, closed timelike horizon, and the study of particle emissions

    Full text link
    We show that a particle, with positive orbital angular momentum, following an outgoing null/timelike geodesic, shall never reach the closed timelike horizon (CTH) present in the (4+1)(4+1)-dimensional rotating G\"{o}del black hole space-time. Therefore a large part of this space-time remains inaccessible to a large class of geodesic observers, depending on the conserved quantities associated with them. We discuss how this fact and the existence of the closed timelike curves present in the asymptotic region make the quantum field theoretic study of the Hawking radiation, where the asymptotic observer states are a pre-requisite, unclear. However, the semiclassical approach provides an alternative to verify the Smarr formula derived recently for the rotating G\"{o}del black hole. We present a systematic analysis of particle emissions, specifically for scalars, charged Dirac spinors and vectors, from this black hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde

    Speckle Interferometry at SOAR in 2020

    Get PDF
    The results of speckle interferometric observations at the 4.1 m Southern Astrophysical Research Telescope in 2020, as well as earlier unpublished data, are given, totaling 1735 measurements of 1288 resolved pairs and nonresolutions of 1177 targets. We resolved for the first time 59 new pairs or subsystems in known binaries, mostly among nearby dwarf stars. This work continues our long-term speckle program. Its main goal is to monitor orbital motion of close binaries, including members of high-order hierarchies and Hipparcos pairs in the solar neighborhood. We also report observations of 892 members of young moving groups and associations, where we resolved 103 new pairs

    Improved tensor-product expansions for the two-particle density matrix

    Full text link
    We present a new density-matrix functional within the recently introduced framework for tensor-product expansions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix functionals, becoming very accurate for high densities and outperforming Hartree-Fock at metallic valence electron densities. For isolated atoms and ions, it is on a par with previous density-matrix functionals and generalized gradient approximations to density-functional theory. We also present analytic results for the correlation energy in the low density limit of the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure
    • 

    corecore