1,230 research outputs found
The omega meson at high temperatures
The decays of the omega meson in a heat bath of thermally excited pions is
studied within the framework of real-time thermal field theory using an
appropriate effective Lagrangian. We show that the omega meson spectrum
broadens considerably at temperatures T > 100 MeV, primarily because of omega
pi -> pi pi reactions in the thermal environment.Comment: 7 pages, 2 figures; reference and paragraph added; version to appear
in Phys. Lett.
Estimating the aquatic risk from exposure to up to twenty-two pesticide active ingredients in waterways discharging to the Great Barrier Reef
Pesticides decrease the quality of water reaching the Great Barrier Reef (GBR), Australia. Up to 86 pesticide active ingredients (PAIs) were monitored between July 2015 to end of June 2018 at 28 sites in waterways that discharge to the GBR. Twenty-two frequently detected PAIs were selected to calculate their combined risk when they co-occur in water samples. Species sensitivity distributions (SSDs) for the 22 PAIs to fresh and marine species were developed. The SSDs, the multi-substance potentially affected fraction (msPAF) method, Independent Action model of joint toxicity and a Multiple Imputation method were combined to convert measured PAI concentration data to estimates of the Total Pesticide Risk for the 22 PAIs (TPR22) expressed as the average percentage of species affected during the wet season (i.e., 182 days). The TPR22 and percent contribution of active ingredients of Photosystem II inhibiting herbicides, Other Herbicides, and Insecticides to the TPR22 were estimated. The TPR22 ranged from 22 estimates were >1 % â meaning they did not meet the Reef 2050 Water Quality Improvement Plan's pesticide target for waters entering the GBR. There were marked spatial differences in TPR22 estimates â regions dominated by grazing had lower estimates while those with sugar cane tended to have higher estimates. On average, active ingredients of PSII herbicides contributed 39 % of the TPR22, the active ingredients of Other Herbicides contributed ~36 % and of Insecticides contributed ~24 %. Nine PAIs (diuron, imidacloprid, metolachlor, atrazine, MCPA, imazapic, metsulfuron, triclopyr and ametryn) were responsible for >97 % of TPR22 across all the monitored waterways.</p
Actions of Camptothecin Derivatives on Larvae and Adults of the Arboviral Vector Aedes aegypti
Mosquito-borne viruses including dengue, Zika, and Chikungunya viruses, and parasites such as malaria and Onchocerca volvulus endanger health and economic security around the globe, and emerging mosquito-borne pathogens have pandemic potential. However, the rapid spread of insecticide resistance threatens our ability to control mosquito vectors. Larvae of Aedes aegypti were screened with the Medicines for Malaria Venture Pandemic Response Box, an open-source compound library, using INVAPP, an invertebrate automated phenotyping platform suited to high-throughput chemical screening of larval motility. We identified rubitecan (a synthetic derivative of camptothecin) as a hit compound that reduced A. aegypti larval motility. Both rubitecan and camptothecin displayed concentration dependent reduction in larval motility with estimated EC50 of 25.5 ± 5.0 ”M and 22.3 ± 5.4 ”M, respectively. We extended our investigation to adult mosquitoes and found that camptothecin increased lethality when delivered in a blood meal to A. aegypti adults at 100 ”M and 10 ”M, and completely blocked egg laying when fed at 100 ”M. Camptothecin and its derivatives are inhibitors of topoisomerase I, have known activity against several agricultural pests, and are also approved for the treatment of several cancers. Crucially, they can inhibit Zika virus replication in human cells, so there is potential for dual targeting of both the vector and an important arbovirus that it carries
Examining Periodic Solar Wind Density Structures Observed in the SECCHI Heliospheric Imagers
We present an analysis of small-scale, periodic, solar-wind density
enhancements (length-scales as small as \approx 1000 Mm) observed in images
from the Heliospheric Imager (HI) aboard STEREO A. We discuss their possible
relationship to periodic fluctuations of the proton density that have been
identified at 1 AU using in-situ plasma measurements. Specifically, Viall,
Kepko, and Spence (2008) examined 11 years of in-situ solar-wind density
measurements at 1 AU and demonstrated that not only turbulent structures, but
also non-turbulent periodic density structures exist in the solar wind with
scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall,
Spence, and Kasper (2009) analyzed the {\alpha} to proton solar-wind abundance
ratio measured during one such event of periodic density structures,
demonstrating that the plasma behavior was highly suggestive that either
temporally or spatially varying coronal source plasma created those density
structures. Large periodic density structures observed at 1 AU, which were
generated in the corona, can be observable in coronal and heliospheric
white-light images if they possess sufficiently high density contrast. Indeed,
we identify such periodic density structures as they enter the HI field of view
and follow them as they advect with the solar wind through the images. The
smaller periodic density structures that we identify in the images are
comparable in size to the larger structures analyzed in-situ at 1 AU, yielding
further evidence that periodic density enhancements are a consequence of
coronal activity as the solar wind is formed.Comment: 15 pages, 12 figures. The final publication is available at
http://www.springerlink.co
Can cartilage loss be detected in knee osteoarthritis (OA) patients with 3â6 months' observation using advanced image analysis of 3T MRI?
SummaryPurposePrior investigations of magnetic resonance imaging (MRI) biomarkers of cartilage loss in knee osteoarthritis (OA) suggest that trials of interventions which affect this biomarker with adequate statistical power would require large clinical studies of 1â2 years duration. We hypothesized that smaller, shorter duration, âProof of Conceptâ (PoC) studies might be achievable by: (1) selecting a population at high risk of rapid medial tibio-femoral (TF) progression, in conjunction with; (2) high-field MRI (3T), and; (3) using advanced image analysis. The primary outcome was the cartilage thickness in the central medial femur.MethodsMulti-centre, non-randomized, observational cohort study at four sites in the US. Eligible participants were females with knee pain, a body mass index (BMI)â„25kg/m2, symptomatic radiographic evidence of medial TF OA, and varus mal-alignment. The 29 participants had a mean age of 62 years, mean BMI of 36kg/m2, with eight index knees graded as KellgrenâLawrence (K&L)=2 and 21 as K&L=3. Eligible participants had four MRI scans of one knee: two MRIs (1 week apart) were acquired as a baseline with follow-up MRI at 3 and 6 months. A trained operator, blind to time-point but not subject, manually segmented the cartilage from the Dual Echo Steady State water excitation MR images. Anatomically corresponding regions of interest were identified on each image by using a three-dimensional statistical shape model of the endosteal bone surface, and the cartilage thickness (with areas denuded of cartilage included as having zero thickness â ThCtAB) within each region was calculated. The percentage change from baseline at 3 and 6 months was assessed using a log-scale analysis of variance (ANOVA) model including baseline as a covariate. The primary outcome was the change in cartilage thickness within the aspect of central medial femoral condyle exposed within the meniscal window (w) during articulation, neglecting cartilage edges [nuclear (n)] (nwcMF·ThCtAB), with changes in other regions considered as secondary endpoints.ResultsAnatomical mal-alignment ranged from â1.9° to 6.3°, with mean 0.9°. With one exception, no changes in ThCtAB were detected at the 5% level for any of the regions of interest on the TF joint at 3 or 6 months of follow-up. The change in the primary variable (nwcMF·ThCtAB) from (mean) baseline at 3 months from the log-scale ANOVA model was â2.1% [95% confidence interval (CI) (â4.4%, +0.2%)]. The change over 6 months was 0.0% [95% CI (â2.7%, +2.8%)]. The 95% CI for the change from baseline did not include zero for the cartilage thickness within the meniscal window of the lateral tibia (wLT·ThCtAB) at 6 month follow-up (â1.5%, 95% CI [â2.9, â0.2]), but was not significant at the 5% level after correction for multiple comparisons.ConclusionsThe small inconsistent compartment changes, and the relatively high variabilities in cartilage thickness changes seen over time in this study, provide no additional confidence for a 3- or 6-month PoC study using a patient population selected on the basis of risk for rapid progression with the MRI acquisition and analyses employed
Entanglement, Bell Inequalities and Decoherence in Particle Physics
We demonstrate the relevance of entanglement, Bell inequalities and
decoherence in particle physics. In particular, we study in detail the features
of the ``strange'' system as an example of entangled
meson--antimeson systems. The analogies and differences to entangled spin--1/2
or photon systems are worked, the effects of a unitary time evolution of the
meson system is demonstrated explicitly. After an introduction we present
several types of Bell inequalities and show a remarkable connection to CP
violation. We investigate the stability of entangled quantum systems pursuing
the question how possible decoherence might arise due to the interaction of the
system with its ``environment''. The decoherence is strikingly connected to the
entanglement loss of common entanglement measures. Finally, some outlook of the
field is presented.Comment: Lectures given at Quantum Coherence in Matter: from Quarks to Solids,
42. Internationale Universit\"atswochen f\"ur Theoretische Physik,
Schladming, Austria, Feb. 28 -- March 6, 2004, submitted to Lecture Notes in
Physics, Springer Verlag, 45 page
Lectures on Chiral Disorder in QCD
I explain the concept that light quarks diffuse in the QCD vacuum following
the spontaneous breakdown of chiral symmetry. I exploit the striking analogy to
disordered electrons in metals, identifying, among others, the universal regime
described by random matrix theory, diffusive regime described by chiral
perturbation theory and the crossover between these two domains.Comment: Lectures given at the Cargese Summer School, August 6-18, 200
Speckle Interferometry at SOAR in 2020
The results of speckle interferometric observations at the 4.1 m Southern Astrophysical Research Telescope in 2020, as well as earlier unpublished data, are given, totaling 1735 measurements of 1288 resolved pairs and nonresolutions of 1177 targets. We resolved for the first time 59 new pairs or subsystems in known binaries, mostly among nearby dwarf stars. This work continues our long-term speckle program. Its main goal is to monitor orbital motion of close binaries, including members of high-order hierarchies and Hipparcos pairs in the solar neighborhood. We also report observations of 892 members of young moving groups and associations, where we resolved 103 new pairs
G\"{o}del black hole, closed timelike horizon, and the study of particle emissions
We show that a particle, with positive orbital angular momentum, following an
outgoing null/timelike geodesic, shall never reach the closed timelike horizon
(CTH) present in the -dimensional rotating G\"{o}del black hole
space-time. Therefore a large part of this space-time remains inaccessible to a
large class of geodesic observers, depending on the conserved quantities
associated with them. We discuss how this fact and the existence of the closed
timelike curves present in the asymptotic region make the quantum field
theoretic study of the Hawking radiation, where the asymptotic observer states
are a pre-requisite, unclear. However, the semiclassical approach provides an
alternative to verify the Smarr formula derived recently for the rotating
G\"{o}del black hole. We present a systematic analysis of particle emissions,
specifically for scalars, charged Dirac spinors and vectors, from this black
hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde
Improved tensor-product expansions for the two-particle density matrix
We present a new density-matrix functional within the recently introduced
framework for tensor-product expansions of the two-particle density matrix. It
performs well both for the homogeneous electron gas as well as atoms. For the
homogeneous electron gas, it performs significantly better than all previous
density-matrix functionals, becoming very accurate for high densities and
outperforming Hartree-Fock at metallic valence electron densities. For isolated
atoms and ions, it is on a par with previous density-matrix functionals and
generalized gradient approximations to density-functional theory. We also
present analytic results for the correlation energy in the low density limit of
the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure
- âŠ