843 research outputs found

    Bound-State Variational Wave Equation For Fermion Systems In QED

    Full text link
    We present a formulation of the Hamiltonian variational method for QED which enables the derivation of relativistic few-fermion wave equation that can account, at least in principle, for interactions to any order of the coupling constant. We derive a relativistic two-fermion wave equation using this approach. The interaction kernel of the equation is shown to be the generalized invariant M-matrix including all orders of Feynman diagrams. The result is obtained rigorously from the underlying QFT for arbitrary mass ratio of the two fermions. Our approach is based on three key points: a reformulation of QED, the variational method, and adiabatic hypothesis. As an application we calculate the one-loop contribution of radiative corrections to the two-fermion binding energy for singlet states with arbitrary principal quantum number nn, and l=J=0l =J=0. Our calculations are carried out in the explicitly covariant Feynman gauge.Comment: 26 page

    Nonsymmetric Gravitational Theory

    Get PDF
    A new version of nonsymmetric gravitational theory is presented. The field equations are expanded about the Minkowski metric, giving in lowest order the linear Einstein field equations and massive Proca field equations for the antisymmetric field g[μν]g_{[\mu\nu]}. An expansion about an arbitrary Einstein background metric yields massive Proca field equations with couplings to only physical modes. It follows that the new version of NGT is free of ghost poles, tachyons and higher-order poles and there are no problems with asymptotic boundary conditions. A static spherically symmetric solution of the field equations in the short-range approximation is everywhere regular and does not contain a black hole event horizon.Comment: 11 pages plain TeX. TeX macrofile included. Corrections in formula

    Conditional probabilities in Ponzano-Regge minisuperspace

    Full text link
    We examine the Hartle-Hawking no-boundary initial state for the Ponzano-Regge formulation of gravity in three dimensions. We consider the behavior of conditional probabilities and expectation values for geometrical quantities in this initial state for a simple minisuperspace model consisting of a two-parameter set of anisotropic geometries on a 2-sphere boundary. We find dependence on the cutoff used in the construction of Ponzano-Regge amplitudes for expectation values of edge lengths. However, these expectation values are cutoff independent when computed in certain, but not all, conditional probability distributions. Conditions that yield cutoff independent expectation values are those that constrain the boundary geometry to a finite range of edge lengths. We argue that such conditions have a correspondence to fixing a range of local time, as classically associated with the area of a surface for spatially closed cosmologies. Thus these results may hint at how classical spacetime emerges from quantum amplitudes.Comment: 26 pages including 10 figures, some reorganization in the presentation of results, expanded discussion of results in the context of 2+1 gravity in the Witten variables, 3 new reference

    Resolving Curvature Singularities in Holomorphic Gravity

    Get PDF
    We formulate holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature singularity. Likewise, typical observers do not experience Big Bang singularity. Unlike Hermitian gravity \cite{MantzHermitianGravity}, Holomorphic gravity does not respect the reciprocity symmetry and thus it is mainly a toy model for a gravity theory formulated on complex space-times. Yet it is a model that deserves a closer investigation since in many aspects it resembles Hermitian gravity and yet calculations are simpler. We have indications that holomorphic gravity reduces to the laws of general relativity correctly at large distance scales.Comment: 14 pages, 7 figure

    Quantum corrections to the entropy of charged rotating black holes

    Full text link
    Hawking radiation from a black hole can be viewed as quantum tunneling of particles through the event horizon. Using this approach we provide a general framework for studying corrections to the entropy of black holes beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics, we study charged rotating black holes and explicitly work out the corrections to entropy and horizon area for the Kerr-Newman and charged rotating BTZ black holes. It is shown that the results for other geometries like the Schwarzschild, Reissner-Nordstr\"{o}m and anti-de Sitter Schwarzschild spacetimes follow easily

    Two-dimensional dS/CFT correspondence

    Get PDF
    We investigate de Sitter/conformal field theory (dS/CFT) correspondence in two dimensions. We define the conserved mass of de Sitter spacetime and formulate the correspondence along the lines of anti-de Sitter/conformal field theory duality. Asymptotic symmetry group, mass, and central charge of de Sitter spacetime are equal to those of anti-de Sitter spacetime. The entropy of two-dimensional de Sitter spacetime is evaluated by applying Cardy formula. We calculate the boundary correlators induced by the propagation of the dilaton in two-dimensional de Sitter space. Although the dilaton is a tachyonic perturbation in the bulk, boundary conformal correlators have positive dimension.Comment: 18 pages, Latex fil

    Nonholonomic Ricci Flows, Exact Solutions in Gravity, and Symmetric and Nonsymmetric Metrics

    Full text link
    We provide a proof that nonholonomically constrained Ricci flows of (pseudo) Riemannian metrics positively result into nonsymmetric metrics (as explicit examples, we consider flows of some physically valuable exact solutions in general relativity). There are constructed and analyzed three classes of solutions of Ricci flow evolution equations defining nonholonomic deformations of Taub NUT, Schwarzschild, solitonic and pp--wave symmetric metrics into nonsymmetric ones.Comment: latex2e, 12pt, 40 pages, version 2 with minor modifications, to be published in Int. J. Theor. Phy

    Electromagnetic Polarization Effects due to Axion Photon Mixing

    Full text link
    We investigate the effect of axions on the polarization of electromagnetic waves as they propagate through astronomical distances. We analyze the change in the dispersion of the electromagnetic wave due to its mixing with axions. We find that this leads to a shift in polarization and turns out to be the dominant effect for a wide range of frequencies. We analyze whether this effect or the decay of photons into axions can explain the large scale anisotropies which have been observed in the polarizations of quasars and radio galaxies. We also comment on the possibility that the axion-photon mixing can explain the dimming of distant supernovae.Comment: 18 pages, 1 figur

    Chiral-symmetry restoration in the linear sigma model at nonzero temperature and baryon density

    Get PDF
    We study the chiral phase transition in the linear sigma model with 2 quark flavors and NcN_c colors. One-loop calculations predict a first-order phase transition at both μ=0\mu=0 and μ≠0\mu\neq 0. We also discuss the phase diagram and make a comparison with a thermal parametrization of existing heavy-ion experimental data.Comment: 12 pages, 6 ps-figures, LaTe
    • …
    corecore