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3Universitàdi Cagliari, Dipartimento di Matematica, Viale Merello 92, 09123 Cagliari, Italy
and INFN, Sezione di Cagliari, 09042 Monserrato, Italy
~Received 30 May 2002; published 23 September 2002!

We investigate de Sitter/conformal field theory~dS/CFT! correspondence in two dimensions. We define the
conserved mass of de Sitter spacetime and formulate the correspondence along the lines of the anti–de
Sitter/conformal field theory duality. The asymptotic symmetry group, mass, and central charge of de Sitter
spacetime are equal to those of anti–de Sitter spacetime. The entropy of two-dimensional de Sitter spacetime
is evaluated by applying the Cardy formula. We calculate the boundary correlators induced by the propagation
of the dilaton in two-dimensional de Sitter space. Although the dilaton is a tachyonic perturbation in the bulk,
boundary conformal correlators have a positive dimension.

DOI: 10.1103/PhysRevD.66.065008 PACS number~s!: 11.10.Kk, 04.50.1h, 11.25.Hf

I. INTRODUCTION

Recently, Strominger proposed a correspondence between
gravity on d-dimensional de Sitter space and
(d21)-dimensional conformal field theory@1,2#. Evidence
of a positive cosmological constantl provided by astro-
physical observations@3,4# suggests that we live in a de Sit-
ter spacetime. An important feature of de Sitter spacetime is
the existence of a cosmological horizon endowed with en-
tropy @5#. de Sitter/conformal field theory~dS/CFT! corre-
spondence may hold the key to its microscopical interpreta-
tion. Moreover, new investigations have revealed the
existence of holographic cosmological bounds on entropy
and a correspondence between cosmological Friedmann
equations and the Cardy formula of CFT@6,7#. A dS/CFT
duality could be crucial in understanding the holographic
principle in cosmology.

Naively, we would expect dS/CFT correspondence to pro-
ceed along the lines of anti–de Sitter/conformal field theory
~AdS/CFT! correspondence because de Sitter spacetime can
be obtained from anti–de Sitter spacetime by analytically
continuing the cosmological constant to imaginary values.
However, local and global properties of de Sitter spacetime
lead to unexpected obstructions. Unlike anti–de Sitter space-
time, the boundary of de Sitter spacetime is spacelike and its
dual CFT is Euclidean. Moreover, de Sitter spacetime does
not admit a global timelike Killing vector. The time depen-
dence of the spacetime metric precludes a consistent defini-
tion of energy and the use of the Cardy formula to compute
de Sitter entropy. Finally, the dS/CFT duality leads to bound-
ary operators with complex conformal weights, i.e., to a non-
unitary CFT. In spite of these difficulties, some progress to-
wards a consistent definition of dS/CFT correspondence has

been achieved. A new procedure@8# for the computation of
the boundary stress tensor allows the definition of a con-
served mass and the calculation of the entropy of asymptoti-
cally de Sitter spacetimes@8,9#. In the three-dimensional
case, by far the best-known example of the dSd /CFTd21
correspondence, the central charge of the dual CFT has been
computed and used in the Cardy formula to evaluate the
entropy@1,10–12#.

In this paper we investigate dSd /CFTd21 correspondence
in two dimensions. Previous investigations of dS2 /CFT1 du-
ality have only considered the quantization of scalar fields in
two-dimensional~2D! de Sitter spacetime@13#. Here, we
analyze the dS2 /CFT1 correspondence in a full dynamical
context, i.e., with 2D de Sitter spacetime emerging as a so-
lution of the field equations. The main obstruction to the
implementation of dS2 /CFT1 correspondence along the lines
of AdS2 /CFT1 correspondence@14–18# is the definition of a
conserved mass for de Sitter spacetime. We show that a pro-
cedure similar to that of Ref.@8# enables the formulation of
dS2 /CFT1 correspondence in analogy to the AdS2 /CFT1
case@14#. The generators of the asymptotic symmetric group
of dS2 satisfy a Virasoro algebra. We compute the central
charge of the algebra by adapting to dS2 /CFT1 the canonical
formalism of AdS2 /CFT1 correspondence@14# and its inter-
pretation as Casimir energy@15,16#. The entropy of 2D de
Sitter spacetime is evaluated by applying the Cardy formula.
In the second part of the paper we calculate the correlators
induced on the one-dimensional boundary of the spacetime
by the propagation of the dilaton in the 2D bulk. Although
the dilaton is a tachyonic perturbation in the 2D spacetime,
the dual boundary operator has positive conformal dimension
h52. This somehow unexpected result seems to be a general
feature of the dS/CFT correspondence.

II. 2D COSMOLOGICAL SOLUTIONS OF de SITTER
GRAVITY

Let us consider the 2D dilaton gravity model with action

I 5
1

2E A2gd2xF~R22l2!, ~1!
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whereF is the dilaton field,l is the cosmological constant,
and R is the 2D Ricci scalar. The general solution of the
model~1! describes a 2D hyperbolic manifold with constant
positive curvatureR52l2 ~de Sitter spacetime! endowed
with a nonconstant dilaton. Two-dimensional de Sitter space
can be defined as the hyperboloid

X21Y22Z25
1

l2 ~2!

embedded in the three-dimensional spacetime with hyper-
bolic metricds25dX21dY22dZ2. de Sitter spacetime can
be interpreted as the analytical continuationl→ il of
anti–de Sitter spacetime. de Sitter spacetime is geodesically
complete. However, the presence of the dilaton field leads to
three globally nonequivalent solutions which are described
by coordinate charts covering different regions of the de Sit-
ter hyperboloid. In analogy to the AdS case@19#, we call
these solutions dS0 , dS2 , dS1 .

dS0. In conformal coordinates the general solution of the
gravity model~1! is

ds25
1

l2t2
~2dt21dx2!,

F5
a~x22t2!1bx1g

t
, ~3!

where a, b, and g are integration constants. The spatial
sections att5const are either the line (2`,x,`) or the
one-dimensional sphereS1 (2p,x,p). The solution~3! is
singular att50. Therefore, dS0 covers half of the de Sitter
hyperboloid~2!. Settinglt5elT the metric in Eq.~3! reads

ds252dT21e22lTdx2, ~4!

where2`,T,`. Equation~4! is thed52 case of the dSd
solution in planar coordinates@1,2#. An interesting feature of
the 2D solution is that the sections atT5const may have
either the topology of the line or of the circle. In higher
dimensions only planar topologies are allowed. The (T,x)
coordinate system covers half of the de Sitter hyperboloid.
The spatial section atT52` (t50) andT5` (t5`) are
the spacelike boundaryI 2 of the spacetime and the cosmo-
logical future horizon, respectively. Alternatively, we can
cover the other half of the de Sitter hyperboloid by setting
lt52e2lT. In this caseT52` (t52`) and T5` (t
50) are the cosmological past horizon and the spacelike
boundaryI 1 of the spacetime. Settinglt51/(lt) the line
element in Eq.~3! becomes

ds252
1

l2t2
dt21l2t2dx2. ~5!

The dS0 solution is the analytic continuationl→ il of the
2D anti–de Sitter AdS0 solution @19#.

dS2 . Setting

t5
1

al
ealssinh~alt̂!, x5

1

al
ealscosh~alt̂!, ~6!

the metric in Eq.~3! is cast in the dS2 form

ds25
a2

sinh2~alt̂!
~2dt̂21ds2!. ~7!

The (t̂,s) coordinates cover the regionx2>t2 of dS0. The
coordinate transformation~6! is analogous to the coordinate
transformation which relates Minkowski and Rindler space-
times. Curves of constants are hyperbola in the (t,x) coor-
dinate frame and represent world lines of accelerated observ-
ers. Analogously to the AdS case@19#, dS2 spacetime can be
interpreted as the thermalization of dS0 spacetime at tem-
peratureTH5al/2p. Defining

coshlT5cotanh~alt̂!, ~8!

Eq. ~7! reads

ds252dT21a2sinh2lTds2, ~9!

where the cosmological timeT is defined in the interval
2`,T,0. Similarly to the planar slicing~4!, the coordi-
nates can parametrize either a line or a circle. Settinglt
5acoshlT, Eq. ~9! is cast in the form

ds252
1

l2t22a2
dt21~l2t22a2!ds2. ~10!

dS2 can be interpreted as the analytic continuation,l→ il,
of the 2D AdS1 solution @19#.

dS1 . In conformal coordinates the dS1 spacetime is de-
scribed by the line element

ds25
a2

cos2~alt!
~2dt21dr2!, ~11!

where 2p/2al<t<p/2al. Equation ~11! describes the
whole de Sitter hyperboloid~2!. The spacelike coordinater
can be either periodic or defined on the real line. Equation
~11! corresponds to the spherical slicing of higher dimen-
sional de Sitter spacetime@1,2#. Setting

sinhlT5tan~alt!, ~12!

Eq. ~12! is cast in the form

ds252dT21a2cosh2lT dr2, ~13!

where 2`,T,`. The spatial sections atT56` (t5
6p/2al) areI 1 andI 2, respectively. Finally, settinglt
5asinhlT the dS1 line element becomes

ds252
1

a21l2t2
dt21~a21l2t2!dr2. ~14!
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The dS1 solution is the analytic continuation,l→ il, of the
2D AdS2 solution @19#.

Let us conclude this section with a short discussion of the
global features of 2D de Sitter spacetime. When the space-
like coordinate is noncompact dS0 , dS2 , and dS1 are topo-
logically equivalent to the two-dimensional plane. When the
spacelike coordinate is compact the three spacetimes are to-
pologically distinct. They describe three different cosmologi-
cal evolutions of a one-dimensional circular universe. dS1

has cylindrical topology and describes a large-to-large radius
evolution passing through a radius with minimum~finite!
size. dS0 (dS2) describes the evolution of a circle with large
radius atT52` to a circle with zero radius atT5` (T
50).

III. ISOMETRIES OF 2D de SITTER SPACETIME AND
CONSERVED MASS

The isometry group of 2D de Sitter spacetime isSL(2,R).
In the coordinate system of Eq.~3! the isometry group of dS0
is described by the Killing vectors

j05~t,x!, j15~0,2!, j215S tx,
1

2
~t21x2! D .

~15!

The SL(2,R) algebra is generated by the operators

L05t]t1x]x , L152]x ,

L215tx]t1 1
2 ~t21x2!]x . ~16!

L0 , L1, andL21 generate dilatations, translations inx, and
special conformal transformations, respectively. Any inde-
pendent Killing vector defines an independent conserved
charge. A crucial point is to identify the Killing vector that
defines the energy of the solutions. Since we are dealing with
time-dependent cosmological solutions, we do not expect
any conserved charge associated with a globally timelike
Killing vector. The Killing vectorsj1 andj21 are spacelike
on the whole de Sitter hyperboloid. The Killing vectorj0 is
timelike ~spacelike! for t2.x2 (t2,x2). In particular,j0 is
spacelike on the boundariesI 6. As was pointed out in Ref.
@1# for de Sitter spacetime ind.2 dimensions, the absence
of a timelike conserved charge on the spacetime boundaries
I 6 represents a serious obstruction to the implementation of
the dS/CFT correspondence. Ford.2 a solution to this
problem has been proposed in Ref.@8#, where the conserved
mass of dSd space is defined as an integral on the surfaceS
orthogonal to a Killing vectorj̃ of the boundary metric. This
definition identifies the mass of the dS spacetime with the
conserved charge of the theory living in its boundary. How-
ever, the procedure of Ref.@8# cannot be implemented in the
dS2 /CFT1 context because in this case the surfaceS is a
point.

Using the results of Ref.@20#, it is straightforward to
prove that no timelike Killing vector exists on the spacetime
boundary of dS2. Moreover, any Killing vectorjn of the

metric must also be a Killing vector of the dilaton field, i.e.,
jn must be a solution of the scalar Killing equation

jn]nF50. ~17!

Given jn, the quantity

Tm5Tmnjn, ¹mTm50, ~18!

defines the conserved chargeQ through the equationTm

5«m
n ¹nQ. In general, the dilaton gravity model~1! admits a

Killing vector of the form

ĵn5F0enm]mF, ~19!

whereF0 is an arbitrary constant. The conserved charge is

Q5
F0

2
@2l2F22~¹F!2#. ~20!

Equation~20! is a local and covariant definition of the con-
served charge. Substituting the dS0 solution ~3! in Eqs.~19!
and ~20! the Killing vector and charge read

ĵ5F0@2axt1bt,a~t21x2!1bx1g#, ~21!

Q5
F0

2
l2~4ag2b2!, ~22!

respectively. As expected,ĵ is a linear combination of the
three Killing vectors of the metric~15!. On the boundaries
I 6 the norm of ĵ satisfiest2u ĵu25(A12g)2, where A

5x(ax1b). Therefore, the Killing vectorĵn is spacelike on
I 6 for any point of the moduli space. Moreover, there is no
value of the parametersa, b, and g such thatĵ is every-
where timelike.

Although our model does not admit any global timelike
Killing vector, Eqs.~21! and ~22! define a one-to-one map
between moduli space of the dilaton and symmetries and
conserved charges. We can single out solutions with a given
conserved charge by choosing the subgroup ofSL(2,R) that
leaves the dilaton invariant. Solutions invariant under dilata-
tions are obtained by choosinga5g50. In this case the
dilaton is

F5b
x

t
, ~23!

and the conserved charge under dilatations isQD5
2 1

2 F0(lb)2. We may also require that the dilaton depends
only on time by settinga5b50. This singles out the
x-translation generator from theSL(2,R) isometry group of
dS0.

Summarizing, we fix the chargeQ ~up to a multiplicative
constant! by choosing a point in the dilaton moduli space and
identify the massM of the cosmological solution withQ
itself. This procedure is the 2D analogue of that of Ref.@8#:
In two dimensions the Killing vector of the boundary metric
is j̃}]x and the surfaceS which is orthogonal toj̃ is a point.
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The above procedure enables us to calculate the mass of
dS0 , dS2 , and dS1 solutions. If we impose that the dilaton
depends only on time, and uset as timelike coordinate,F
5l2gt5F0lt for the three different parametrizations~5!,
~10!, and ~14! of dS2. Using this equation in Eq.~20!, we
find M50 and

M56F0

l2

2
F0

2a2, ~24!

for dS0 and dS6 , respectively. The mass~24! is defined up to
the overall arbitrary constantF0. The sign ofF0 can be fixed
by requiringM to be positive for the dS2 solution ~‘‘stabil-
ity’’ condition!. The absolute value ofF0 is determined by
requiring thatM coincides with the mass defined as a bound-
ary integral~see Sec. V!. Together, these two conditions fix
F0521/(lF0).1 With this choice the energy is positive,
zero, and negative for dS2 , dS0, and dS1 , respectively. The
Killing vector ĵ is

ĵ5~0,21!. ~25!

Translations inx have the opposite direction with respect to
the usual definition. With the above normalization the charge
Q of dS2 is positive. The spacelike component ofĵ and the
stress energy tensor are negative. The stability condition
could also be enforced by keeping the usual definition of the
Killing vector, ĵ5(0,1), and reversing the sign of the action
~and then of the stress-energy tensorTmn). This arbitrariness
indicates thatQ cannot be identified with the physical energy
of the gravity theory in the 2D bulk.

IV. ASYMPTOTIC SYMMETRIES OF 2D de SITTER
SPACETIME

Let us consider the 2D de Sitter solutions dS0 , dS2 , and
dS1 . In the coordinate chart (t,r ), wherer 5x,s,r, respec-
tively, for dS0 , dS2 , and dS1 , the Killing vectors generat-
ing the asymptotic symmetry group of the metric are

j t52e8~r !t1
a t~r !

t
1O~ t22!,

j r5e~r !1
1

2

e9~r !

l4t2
1

a r~r !

t4
1O~ t25!.

~26!

The asymptotic form of the line element and of the dilaton
which are invariant under the asymptotic symmetry group
are2

gtt52
1

l2t2
1g tt~r !

1

l4t4
1O~ t25!,

grr 5l2t21g rr ~r !1O~ t21!,

gtr5
g tr~r !

l3t3
1O~ t24!, ~27!

F5F0Flt1r~r !lt1gff~r !
1

lt
1O~ t22!G .

The asymptotic deformations of the fields transform as

dr5r8e2~11r!e8,

dgff5gff8 e1gffe81
r8

2l2
e91l2~11r!a t,

dg tt5g tt8 e12g tte814l2a t, ~28!

dg rr 5g rr8 e12g rr e81
e-

l2
12l2a t,

dg tr5g tr8 e13g tre82~g tt1g rr !
e9

l
2la t824l5a r .

In analogy with the AdS/CFT correspondence, we can com-
pute the generators of the asymptotic symmetry group. We
must distinguish two cases, depending on whether the space-
like sections att5const are the one-dimensional sphereS1

(0<r<2p/l) or the real lineR (2`,r ,`).
0<r<2p/l. For compact spatial sectionse can be ex-

panded in Fourier series in the interval@0,2p/l#,

e~r !5 (
k50

`

@akcos~lkr !1bksin~lkr !#. ~29!

The generators of the group of asymptotic symmetries are
defined by

j5 (
k50

`

l@akAk1bkBk#, ~30!

where
1Generally, we can choose a differentF0 for different solutions of

our 2D gravity model, e.g.,dS1 , dS2 , anddS0. This would cor-
respond to a different normalization of the Killing vector~see be-
low!. Here, we choose for simplicity the same normalization for all
solutions. Moreover, the condition thatM calculated with Eq.~24!
coincides with the mass calculated with a boundary integral re-
quiresF0 to be the same for all solutions.

2Analogously to the AdS case, the asymptotic form of the dilaton
field is not invariant under the transformations generated by Eqs.
~26! but changes with a term of the same order of the field itself.
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Ak5@kt1O~ t21!#sin~lkr !] t

1
1

l S 12
k2

2l2t2 1O~ t24! D cos~lkr !] r , ~31!

Bk5@2kt1O~ t21!#cos~lkr !] t1
1

l S 12
k2

2l2t2

1O~ t24! D sin~lkr !] r . ~32!

The algebra of theAk andBk is

@Ak ,Al #5 1
2 ~k2 l !Bk1 l1

1
2 ~k1 l !Bk2 l ,

@Bk ,Bl #52 1
2 ~k2 l !Bk1 l1

1
2 ~k1 l !Bk2 l ,

~33!

@Ak ,Bl #52 1
2 ~k2 l !Ak1 l1

1
2 ~k1 l !Ak2 l .

Defining the new generatorsLk5 iAk2Bk Eqs.~33! assume
the standard form of a Virasoro algebra

@Lk ,Ll #5~k2 l !Lk1 l1
c

12
~k32k!dk1 l , ~34!

where we have taken into account the possibility of a central
extensionc.

2`,r ,`. In this casee is expanded in the Laurent
series

e~r !5 (
k52`

1`

ak~lr !k. ~35!

The generators of the algebra are defined by

j5 (
k52`

1`

lakL̂k , ~36!

where

L̂k5@2k~lr !k21t1O~ t21!#] t

1
1

l F ~lr !k1
k~k21!

2l2t2
~lr !k221O~ t24!G] r . ~37!

The algebra is

@ L̂k ,L̂m#5~m2k!L̂k1m21 . ~38!

Defining the new generatorsLk52L̂k11, Eq. ~38! is cast in
the standard form~34!.

V. CENTRAL CHARGE

To calculate the central charge we use a canonical realiza-
tion of the asymptotic symmetries. Since the boundary is
spacelike, we parametrize the metric as

ds25N2dr22S2~dt1Ntdr !2. ~39!

The 2D space is foliated along the spacelike coordinater.
Therefore, the dynamical evolution is generated by the Kill-
ing vectorj r . Owing to the normalization ofj r , Eq.~25!, the
integration measure alongr acquires an overall minus sign.
Up to boundary terms the action becomes

I 52E drdtF 1

N S S82
]

]t
~NtS! D ~F82NtḞ!

1N~S21F̈2S22ṠḞ2l2SF!G , ~40!

where prime and dot denote differentiation with respect tor
and t, respectively. Introducing the conjugated momenta

PF5
dL

dF8
, PS5

dL
dS8

, ~41!

the action reads

I 5E drdt@PSS81PFF82NtHt2NHr #, ~42!

where

Ht5PFḞ2ṖSS,

Hr52PFPS1S21F̈2S22ṠḞ2l2SF. ~43!

In order to have well-defined functional derivatives the
Hamiltonian must be supplemented by the surface termJ:

H5E dt~NtHt1NHr !1J, ~44!

where

dJ5 lim
t→`

@N~S22ḞdS2S21dḞ!1Ṅ~S21dF!

2Nt~PFdF2SdPS!#. ~45!

In Eq. ~45! we have considered only the contribution of the
t→` boundary. The contribution of the other boundary of
the de Sitter spacetime gives a similar contribution. This sec-
ond boundary is located att50 ~the horizon! for the dS2 ~or
dS0 solution! and t52` for the dS1 solution.

Let us calculate the conserved chargeQ which is associ-
ated with the Killing vector] r . The chargeQ will be iden-
tified with the mass of the solution. For the dS2 solution
~10!, we havedJ5dQ52(l/2)F0dS22. It follows

Q5
l

2
F0a2, ~46!

in agreement with Eq.~24!. The mass of the dS1 solution
~14! is Q52(l/2)F0a2.
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Using Eq.~26! and Eq.~27! in Eq. ~45!, the variations of
the chargesJ(«) corresponding to the symmetries generated
by the Killing vectors~26! are

dJ~e!52F0FelS g rr dr22dgff1
11r

2
dg ttD

1
1

l
~e9dr2e8dr8!G . ~47!

The central chargec(e,v) can be calculated from the defor-
mation algebra

dvJ~e!5$J~e!,J~v!%DB5J~@e,v#!1c~e,v!. ~48!

We calculate the central charge in the algebra~34! by con-
sidering dS2 as a deformation of dS0. The contributions to
Eq. ~47! come from the two boundaries att5` and t50.
Since the central charge has a purely algebraic nature it does
not depend on the deformations that we are considering. The
central chargec could also be calculated by considering dS1

as the deformation of dS0. In this case the contributions to
Eq. ~47! would come from the boundaries att56`.

Substituting Eq.~47! in Eq. ~48!, and evaluating the equa-
tion on the dS0 background solution (r5g rr 5g tt5gff50
identically!, we find

c~e,v!5
F0

l
~e9v82e8v9!, ~49!

where we have used Eq.~28!. Analogously to the 2D AdS
case, the orthogonality problem@21,14# can be solved, when
the spacelike coordinater is compact, by introducing the
integrated charges

Ĵ~e!5
l

2pE0

2p/l

drJ~e!. ~50!

In this section we will only consider a periodicr. The non-
compact case will be briefly discussed at the end of the sec-
tion. The algebra~33! has the central extension

c~Ak ,Al !5c~Bk ,Bl !50,

c~Ak ,Bl !5F0k2ld ukuu l u . ~51!

The central charge of the Virasoro algebra~34! is found by
shifting theL0 operator by a constant. The result is

c524F0 . ~52!

The central charge of de Sitter spacetime is positive and
equal to that of anti–de Sitter spacetime. Following Ref.
@22#, we can integrate locally the variation~47! near the dS0
background solution:J(e)52F0(e9r2e8r8)/l. SinceJ is
defined up to a totalr derivative, it follows

J~e!52
2F0

l
er95eQ rr , ~53!

whereQ rr can be identified as the stress energy tensor of the
one-dimensional boundary CFT. Using the transformation
law of the boundary fieldr we verify thatQ rr transforms as
a stress-energy tensor with central charge~52!.

Up to now we have considered only the contribution of
the boundary att5` . By taking into account the contribu-
tion of the boundary att50 ~see, e.g., Ref.@17#! the total
central charge is

c512F0 . ~54!

The result above can also be obtained by interpreting the
central charge as Casimir energy.~This method was first used
in Ref. @16# for 2D AdS/CFT correspondence and subse-
quently in Ref.@10# to calculate the central charge of three-
dimensional de Sitter spacetime.! The dS2 line element~10!
is related to the dS0 line element~4! by the coordinate trans-
formation

elT5
eals

Al2t22a2
, x5

teals

aAl2t22a2
. ~55!

On the t→` boundary the coordinate transformationx→s
is

x5
eals

al
. ~56!

Equation~56! is the one-dimensional analogue of the plane-
cylinder transformation of a 2D conformal field theory. The
stress-energy tensorQxx acquires a term which is propor-
tional to the central charge of the CFT and can be interpreted
as a Casimir energy:

Qxx5S dx

ds D 2

Qss2
c

12S dx

ds D 2

$s,x%, ~57!

where $s,x% is the Schwarzian derivative. Substituting Eq.
~56! in Eq. ~57!, and recalling thatQss52lM50 (Qxx5
2lM52 1

2 F0a2l2) for dS0 (dS2), we obtain the result
~54!.

Let us conclude this section by discussing the noncompact
case. If2`,r ,` the measure of the spacetime boundaries
diverges. As a consequence, the integrated charges~50! di-
verge and a complete set of normalizable functionsf k(r )
does not exist. Therefore, some kind of regularization is
needed. In principle, one can solve the problem by introduc-
ing either an infrared cutoff~and subtracting the divergent
part! or weight functions in Eq.~50!. A detailed discussion of
the noncompact case is, however, beyond the purpose of this
paper and we leave it for further investigations.

VI. ENTROPY OF de SITTER SPACETIME

The solution~10! can be continued across the horizont2

,a2/l2:

ds252~a22l2t2!ds21
dt2

a22l2t2 , F5F0lt. ~58!
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Inside the horizont (s) is spacelike~timelike!. The metric is
regular and admits the timelike Killing vectorj05]/]s. The
dilaton has a naked timelike singularity att50, which is the
lower-dimensional analogue of the conical singularity of
three-dimensional de Sitter spacetime.

The temperatureTH is the inverse of the periodb that
must be assigned to the radial coordinate to avoid the conical
singularity in the Euclidean section, i.e.,

TH5
1

2p

dgss

dt U
hor

5
la

2p
. ~59!

The entropy can be calculated by using the Lorentzian action
~see Ref.@9#!. The Euclidean formalism of Gibbons and
Hawking @5# is not suitable because the Euclidean action
vanishes identically. The bulk term is identically zero on the
field equations, and the Euclidean dS2 ~two sphere! has no
boundary contribution. The Lorentzian actionI is @23#

I 5
1

2EM
A2gd2xF~R22l2!

1E
]M

AhdsF~K2K0!, ~60!

whereh is the metric at the boundary,K52ġss/2Agss is
the trace of the extrinsic curvature evaluated at the boundary
t→`, andK0 is the trace of the extrinsic curvature relative
to the background metric dS0. The unusual sign in front of
the boundary integral is due to the choice of normalization
~25!. Computing Eq.~60! on the solution~10!, the boundary
term gives I 52(bF0la2)/252pF0a. By analytically
continuing the Gibbs-Duhem relation, we find

S5bM2I 52pF0a52pFh , ~61!

whereFh is the value of the dilaton at the horizon. Equation
~61! is consistent with the thermodynamical relationTH
5]M /]S. The entropy can also be computed by applying
Cardy formula to the boundary conformal field theory with
the central charge~54!:

S52pAcl0
6

52pF0a. ~62!

Equation~62! is in agreement with the semiclassical result
~61!.

VII. BOUNDARY CORRELATORS

In this section we discuss dS2 /CFT1 correspondence by
computing correlation functions on the spacetime bulk and
on its boundary. In higher-dimensional de Sitter spacetimes
this program is accomplished by studying correlation func-
tions of dual boundary operators induced by an external
field. The 2D model~1!, thanks to the presence of a scalar
degree of freedom~the dilaton fieldF), enables us to com-
pute correlation functions which are induced on the bound-
ary by the gravitational degrees of freedom of the bulk. Let

us consider the field equations of the dilaton

¹m¹nF52l2gmnF. ~63!

2D dilaton gravity has no propagating physical degrees of
freedom: If we restrict ourselves to classical configurations,
and fix the diffeomorphism invariance of the theory, the di-
laton does not propagate. However, we allow dilaton defor-
mations on the one-dimensional boundary of dS2 @r andgff
fields in Eq. ~27!#. These deformations correspond to pure
gauge and off-shell dilaton propagation on the spacetime
boundary. Therefore, we require that the dilaton satisfies the
trace equation

¹2F522l2F, ~64!

instead of the full equations of motion~63!. Equation~64! is
the equation of motion of a scalar field with negative mass-
squaredm2522l2 and describes the propagation of a ta-
chyonic scalar field in 2D de Sitter spacetime. Consider Eqs.
~4!, ~9!, and~13!, wherer 5x, s, andr, respectively. Owing
to the presence of the cosmological horizon, no correlators
betweenr PI 2 and r 8PI 1 exist for dS0 and dS2 . On the
contrary, dS1 covers the whole de Sitter spacetime and non-
trivial correlators betweenr PI 2 and r 8PI 1 exist. Let us
deal with the three cases, separately.

~i! dS0. In the background~4! Eq. ~64! reads

~2]T
21l]T1e2lT] r

2!F522l2F. ~65!

When T→2`, the third term on the left-hand side of Eq.
~65! is negligible. On theI 2 boundary the dilaton is

F;f21~r !e2lT. ~66!

Subleading terms can be evaluated by expandingF in pow-
ers ofelT:

F5 (
n521

`

fn~r !enlT. ~67!

Substituting Eq.~67! in Eq. ~65! we find

F5f21~r !e2lT1f1~r !elT1O~e2lT!, ~68!

where the index denotes the conformal dimension of the
fields f. dS0 has no boundary fields with conformal dimen-
sionsh50. The conformal weights of subleading and lead-
ing terms in Eq.~68! are consistent with the conformal trans-
formation laws of r and gff with weights h561,
respectively. It is interesting to compare the boundary condi-
tion ~68! with that of a generic scalar field of massm that
propagates on 2D de Sitter spacetime@13#: F;eh6lT, where
h65(16A124m2/l2)/2. Settingm2522l2 we find h1

521 andh252. However, the previous result is only valid
for scalar fields with positive squared mass. For tachyonic
fields we haveh1.1 and the term of weighth1 is sublead-
ing with respect tof1.

Changing the sign in the exponents of Eqs.~4!, ~65!, and
~66! we obtain the behavior of the dilaton on the boundary
I1:
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F5f1~r !elT1f21~r !e2lT1O~e22lT!. ~69!

Leading and subleading terms of the dilaton onI 1 are in-
terchanged with respect toI 2. Generalizing to two dimen-
sions the dS/CFT proposal of Ref.@1#, the two-point cor-
relator of an operatorOf on I 2 is derived from the
expression

J5 lim
T→2`

E
I 2

drdr8@e2l(T1T8)F~T,r !

3 ]
↔

TG~T,r ,T8,r 8! ]
↔

T8F~T8,r 8!#T5T8 , ~70!

whereG is the de Sitter invariant Green function.~See the
Appendix.! Using Eqs.~A6a!, ~A11!, and ~68! in Eq. ~70!,
we find

J5k0EI 2
drdr8f21~r !f21~r 8!

1

~r 2r 8!4
, ~71!

wherek0 is a constant. The two-point correlator of an opera-
tor Of dual tof21 is the coefficient of the quadratic term in
Eq. ~71!:

^Of~r !Of~r 8!&5
k08

~r 2r 8!4
. ~72!

Equation~72! is the two-point correlator of a conformal op-
erator of dimensionh52. The two-point correlator onI 1

can be computed in a similar way. The relevant boundary
field is f1(r ) and the dual operator onI 1 satisfies Eq.~72!.
The previous results show that a tachyonic perturbation of
the bulk corresponds to a boundary operator of positive con-
formal dimension. This feature is a consequence of the ho-
lographic correspondence between gravity on the 2D bulk
and CFT on the boundary. Technically, the result follows
from a general property of the integral in Eq.~70!. The dual
operator of a boundary field with conformal dimensionh2

has dimensionh1 . Therefore, the tachyonic perturbation
(h2,0) is in correspondence with a boundary operator of
positive conformal dimension (h1.0). This property seems
to be a general feature of the integral~70! and we expect it to
hold for dS/CFT duality in any dimension.

~ii ! dS2 . In this case de Sitter spacetime is described by
the metric~9!. Equation~64! is

S 2]T
22l coth~lT!]T1

1

a2sinh2~lT!
] r

2D F522l2F.

~73!

SettingT→6` in Eq. ~73!, we find that the asymptotic be-
havior of the dilaton is given by Eqs.~68! and ~69! for I2

andI1, respectively. The dS2 boundary correlators are com-
puted by substituting Eqs.~68! and ~69! and the asymptotic
expression ofG andP given in the Appendix in the integral
~70!:

^Of~r !Of~r 8!&5
k2

sinh4
al

2
~r 2r 8!

. ~74!

Since dS0 and dS2 are locally identical, the correlators~72!
and ~74! have the sameDr 5r 2r 8→0, short distance, be-
havior. The global features of the spacetime become manifest
at largeDr . The sinh behavior in Eq.~74! describes a ther-
mal CFT with temperature equal to the Hawking temperature
of the cosmological horizon of dS2 . This result can be ex-
plained in CFT as follows. Equation~56! maps the boundary
of dS0 on the boundary of dS2 . This transformation can be
interpreted as the one-dimensional analogue of the plane-
cylinder maplz5exp(lw) of a 2D CFT, wherew52w̄5
2 ir . In complex coordinates Eq.~74! becomes

^Of~r !Of~r 8!&5
k28

@sin~pTHDw!sin~pTHDw̄!#2
, ~75!

whereDw5w2w8 and TH is the Hawking temperature of
the cosmological horizon~59!. The appearance of thermal
correlators can also be understood in terms of the 2D gravity
theory: dS2 can be considered as the thermalization of dS0 at
temperatureTH5la/2p ~see Sec. II!.

~iii ! dS1 . In the background~13! the equation of motion
of the dilaton is

S 2]T
22l tanh~lT!]T1

1

a2cosh2~lT!
] r

2D F522l2F .

~76!

On the spacetime boundariesI2 and I1 we obtain again
Eqs.~68! and~69!, respectively. Using Eqs.~A6a! and~A11!
of the Appendix, the two-point boundary correlator is

^Of~r !Of~r 8!&5
k1

sin4
al

2
~r 2r 8!

, ~77!

wherer ,r 8PI 2 or r ,r 8PI 1. Equation~77! is the correlator
for an operator of conformal dimensionh52. In the dS1
case we must also consider correlators between pointsr ,r 8,
wherer PI 2 and r 8PI 1. This corresponds to letT→2`
andT8→` in Eq. ~70!. The functionP defined in Eq.~A5!
satisfies the equation

P~T,r ,T8,r 8!52P~T,r ,2T8,r 81p!. ~78!

Using Eq.~78! for r PI 2 and r 8PI 1, J becomes

J5k18 E drdr8f21~r !f21~r 81p!
1

sin4
al

2
~r 2r 8!

.

~79!

Analogously to the three-dimensional case of Ref.@1#, we
can define the inverted boundary fieldf̃21(r )5f21(r
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1p) and find the nontrivial correlations between points of
the two different boundaries. The correlator of boundary op-
erators dual tof̃21(r 8) andf21(r ) coincide with the two-
point correlator on a single boundary~77!.

VIII. CONCLUSIONS

In this paper we have investigated the 2D dS/CFT corre-
spondence. The de Sitter conserved mass has been defined by
exploiting a peculiar feature of 2D dilaton gravity, namely
the existence of a locally defined, general covariant con-
served charge. The dS2 /CFT1 duality has been implemented
in analogy with the AdS2 /CFT1 correspondence. We have
shown that the group of the asymptotic symmetries of dS2 is
equal to that of AdS2 and is generated by the same Virasoro
algebra. The statistical entropy of the de Sitter cosmological
horizon coincides with the statistical entropy of the AdS
black hole. These results follow from the interpretation of de
Sitter spacetime as ‘‘Wick rotated’’ AdS spacetime. Similar
conclusions have been obtained for higher-dimensional de
Sitter spacetime in Refs.@1,9,12,10#. A major difference be-
tween 2D de Sitter spacetime and the higher-dimensional
cases is the absence, in the former, of an upper bound for the
entropy. The entropy~61! grows without limit with a. The
origin of the difference can be understood by comparing de
Sitter in two and three dimensions. The behavior of the en-
tropy as a function ofa in d52 andd53 is identical. How-
ever, the presence of the conical singularity ind53 provides
the upper bounda51. Ford52 the spacelike coordinater is
not a radial coordinate. Therefore, no ‘‘natural’’ normaliza-
tion can be imposed on it. In Ref.@7# it was argued that this
feature follows from the symmetry under dilatations of the
model and is related with the impossibility of establishing an
area law in two dimensions.

In the second part of the paper we have computed the
boundary correlators of the model. We have found that the
dS/CFT correspondence leads to boundary operators of posi-
tive conformal dimension for 2D bulk tachyonic perturba-
tions. Noncausal tachyonic propagation in the bulk are usu-
ally expected to lead to boundary operators with negative
dimension, i.e., to correlators which usually describe a non-
unitary CFT, such aŝO(r )O(r 8)&;(r 2r 8) l , where l .0.
The positivity of the conformal dimension seems to be
strongly related to the holographic nature of the dS/CFT cor-
respondence. It would be very interesting to understand
whether this property is a peculiarity of the 2D case or a
general feature of the dS/CFT duality.

APPENDIX

In this appendix we derive the 2D, de Sitter–invariant,
Hadamard two-point function for the dilaton field

G~X,X8!5^0u$F~X!,F~X8!%u0&. ~A1!

Equation~A1! is the solution of the equation

~¹X
22m2!G~X,X8!50, ~A2!

where m2522l2. Analogously to higher-dimensional
cases, theSO(1,1) invariant Green function can only be a
function of the geodesic distanced(X,X8), whereX,X8 are
coordinates of the three-dimensional Minkowski embedding
spacetime. It is convenient to introduce the quantity

P~X,X8!5l2XAX8BhAB , ~A3!

where P5cosld and hAB5(1,1,21) is the metric of the
three-dimensional Minkowski spacetime. Using Eq.~2! P
can be calculated for the three different parametrizations of
dS2. We have for dS0

lX5e2lTlr , lY5coshlT2elT~lr !2/2,

lZ52sinhlT1e2lT~lr !2/2, ~A4a!

for dS2

lX5coshlT, l Y5sinhlT sinhlr ,

lZ5sinhlT coshlr , ~A4b!

and for dS1

lX5coshlT sinlr , lY5coshlT coslr ,

lZ5sinhlT. ~A4c!

Substituting Eqs.~A4! in Eq. ~A3! we find for dS0

P5coshl~T2T8!2l2e2l(T1T8)~r 2r 8!2/2, ~A5a!

for dS2

P5coshlT coshlT82sinhl~T!sinhlT8coshl~r 2r 8!,

~A5b!

and for dS1

P5coshlTcoshlT8cosl~r 2r 8!

2sinhlT sinhlT8. ~A5c!

The asymptotic behavior ofP at T→2` is for dS0

lim
T,T8→2`

P52
l2

2
e2l(T1T8)~r 2r 8!2, ~A6a!

for dS2

lim
T,T8→2`

P52
1

2
e2l(T1T8)sinh2l

~r 2r 8!

2
, ~A6b!

and for dS1

lim
T,T8→2`

P52
1

2
e2l(T1T8)sin2l

~r 2r 8!

2
. ~A6c!
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The behavior ofP on I 1 can be obtained by changing the
signs ofT andT8 in Eqs.~A6!. For a generic scalar fieldf of
massm propagating in 2D de Sitter spacetime, Eq.~A2! is
@2,24#

F ~12P2!
d2

dP2
22P

d

dP
2

m2

l2 GG~P!50. ~A7!

The solution of Eq.~A7! is

G5Re F~h1 ,h2 ,1,z!, ~A8!

where F is the hypergeometric function,z5(11P)/2, and
h65(16A124m2/l2)/2. For the dilaton field (m25
22l2) the general solution of Eq.~A7! can be expressed in
terms of elementary functions:

G~P!5c1S 22P lnUP11

P21U D1c2P, ~A9!

wherec1 ,c2 are integration constants. The Green functionG
is the sum of two independent terms. The second term grows

linearly with P and is singular in theP→` limit. This leads
to divergences in Eq.~70!. The singularity can be removed
by imposing the boundary conditionc250. ~It is not clear
whether other physically acceptable boundary conditions ex-
ist.! The first term in Eq.~A9! describes a Green function
with two singularities atP561. The behavior at short dis-
tances is that of a scalar field in a 2D spacetime. NearP
51, i.e., at a geodesic distanced50, G is

lim
P→1

G52c1ln~ld!. ~A10!

The integration constantc1 can be determined by comparing
Eq. ~A10! to the usual short-distance behavior in two-
dimensionsG521/2p ln(ld). The behavior atP→` is

G~P!52
2

3

c1

P2
1O~P24!. ~A11!

Finally, the (c250) Green function is an even function ofP.
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