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We investigate de Sitter/conformal field theddS/CFT) correspondence in two dimensions. We define the
conserved mass of de Sitter spacetime and formulate the correspondence along the lines of the anti—de
Sitter/conformal field theory duality. The asymptotic symmetry group, mass, and central charge of de Sitter
spacetime are equal to those of anti—de Sitter spacetime. The entropy of two-dimensional de Sitter spacetime
is evaluated by applying the Cardy formula. We calculate the boundary correlators induced by the propagation
of the dilaton in two-dimensional de Sitter space. Although the dilaton is a tachyonic perturbation in the bulk,
boundary conformal correlators have a positive dimension.

DOI: 10.1103/PhysRevD.66.065008 PACS nunider11.10.Kk, 04.50+h, 11.25.Hf

[. INTRODUCTION been achieved. A new procedUi@ for the computation of

the boundary stress tensor allows the definition of a con-

Recently, Strominger proposed a correspondence betwe&grved mass and the calculation of the entropy of asymptoti-
gravity on d-dimensional de Sitter space and Cally de Sitter spacetimef8,9]. In the three-dimensional

(d—1)-dimensional conformal field theofil,2]. Evidence €ase, by far the best-known example of the; M5 Ty-,
of a positive cosmological constant provided by astro- correspondence, the central charge of the dual CFT has been
physical observationgs,4] suggests that we live in a de Sit- computed and used in the Cardy formula to evaluate the

. ; ) ~.entropy[1,10-12.
ter spacetime. An important fgature qf de Sitter spacetime i§ In this paper we investigate g&CFT,_, correspondence
the existence of a cosmological horizon endowed with en-

in two dimensions. Previous investigations of, dSFT; du-

ality have only considered the quantization of scalar fields in
X ; g 3fwo-dimensional(2D) de Sitter spacetim§l3]. Here, we
tlo_n. Moreover, new llnvestlgatlon_s have revealed theanalyze the dS/CFT, correspondence in a full dynamical
existence of holographic cosmological bounds on entropygnext, i.e., with 2D de Sitter spacetime emerging as a so-
and a correspondence between cosmological FriedmanQtion of the field equations. The main obstruction to the
equations and the Cardy formula of C8,7]. A dS/CFT  jmplementation of d§/CFT, correspondence along the lines
dua“ty could be crucial in Understandlng the hOlOgrapthOf AdSZ/CFTl Correspondencﬁ4_1a is the definition of a
principle in cosmology. conserved mass for de Sitter spacetime. We show that a pro-

Naively, we would expect dS/CFT correspondence to procedure similar to that of Ref8] enables the formulation of

ceed along the lines of anti—de Sitter/conformal field theorydS,/CFT, correspondence in analogy to the AdSFT,;
(AdS/CFT) correspondence because de Sitter spacetime carase[14]. The generators of the asymptotic symmetric group
be obtained from anti—de Sitter spacetime by analyticallyof dS, satisfy a Virasoro algebra. We compute the central
continuing the cosmological constant to imaginary valuescharge of the algebra by adapting to,dSFT, the canonical
However, local and global properties of de Sitter spacetimgormalism of AdS /CFT, correspondencEl4] and its inter-
lead to unexpected obstructions. Unlike anti—de Sitter spacepretation as Casimir enerdit5,16. The entropy of 2D de
time, the boundary of de Sitter spacetime is spacelike and it§itter spacetime is evaluated by applying the Cardy formula.
dual CFT is Euclidean. Moreover, de Sitter spacetime doel the second part of the paper we calculate the correlators
not admit a global timelike Killing vector. The time depen- induced on the one-dimensional boundary of the spacetime
dence of the spacetime metric precludes a consistent defirffy the propagation of the dilaton in the 2D bulk. Although
tion of energy and the use of the Cardy formula to computéhe dilaton is a tachyonic perturbation in the 2D spacetime,
de Sitter entropy. Finally, the dS/CFT duality leads to boundihe dual l_Joundary operator has positive conformal dimension
ary operators with complex conformal weights, i.e., to a non1=2. This somehow unexpected result seems to be a general
unitary CFT. In spite of these difficulties, some progress tofeature of the dS/CFT correspondence.

wards a consistent definition of dS/CFT correspondence has
Il. 2D COSMOLOGICAL SOLUTIONS OF de SITTER

GRAVITY
*Email address: mariano.cadoni@ca.infn.it Let us consider the 2D dilaton gravity model with action
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where® is the dilaton field\ is the cosmological constant, 1 . 1 .

and R is the 2D Ricci scalar. The general solution of the T= aea""sin}"(a)\r), XZJGa}‘”COSKa)\T), (6)
model (1) describes a 2D hyperbolic manifold with constant

positive curvatureR=2\? (de Sitter spacetimeendowed the metric in Eq(3) is cast in the dS form

with a nonconstant dilaton. Two-dimensional de Sitter space

can be defined as the hyperboloid a2 A
d?=——(—dr?+do?). (7)
1 sinf(ax 1)
X2+Y2—ZZ=F 2

The (7,0) coordinates cover the regiorf= 72 of dS,. The

embedded in the three-dimensional spacetime with hype,c;oordinate transformatio(®6) is analogous to the coordinate
bolic metricds?=dX2+dY2—dZ2. de Sitter spacetime can transformation which relates Minkowski and Rindler space-

be interpreted as the analytical continuatian—ix of times. Curves of constant are hyperbola in thexx) coor-

anti—de Sitter spacetime. de Sitter spacetime is geodesicalfjinate frame and represent world lines of accelerated observ-
complete. However, the presence of the dilaton field leads t§'S- Analogously to the AdS capk9], dS. spacetime can be

three globally nonequivalent solutions which are describednterpreted as the thermalization of dSpacetime at tem-
by coordinate charts covering different regions of the de SitPeratureTy=ak/2a. Defining
ter hyperboloid. In analogy to the AdS cakEd], we call

these solutions dS dS_, dS, . coshA T = cotanlfah 7), (8)
dS,. In conformal coordinates the general solution of the
gravity model(1) is Eq. (7) reads
ds’=—dT2+a’sinkPATdo?, 9
ds?= —dr?+dx?), . . . . . .
)\27-2( 7 ) where the cosmological tim& is defined in the interval
—00<T<0. Similarly to the planar slicing4), the coordi-
a(X2—72)+ Bx+y nate o can parametrize either a line or a circle. Settiig
= . , (3 =acosh\T, Eq. (9) is cast in the form
Where a, B, and y are integration. constants. The spatial ds2= — 1 d2+ (\2t2—a?)do?. (10)
sections atr=const are either the line{<x<) or the Nt2—a?

one-dimensional sphe® (— w<x<). The solution(3) is
singular atr=0. Therefore, dgcovers half of the de Sitter dS_ can be interpreted as the analytic continuatior; i\,
hyperboloid(2). Setting\ 7=eT the metric in Eq(3) reads  of the 2D AdS. solution[19].

dS, . In conformal coordinates the dSspacetime is de-

ds?=—dT?+e 2 Tdx?, (4)  scribed by the line element
where— o< T<, Equation(4) is thed=2 case of the d§ a’ 5 5
solution in planar coordinatd4,2]. An interesting feature of :m(—dT +dp?), (11

the 2D solution is that the sections &t const may have
either the topology of the line or of the circle. In higher
dimensions only planar topologies are allowed. THexj
coordinate system covers half of the de Sitter hyperboloid
The spatial section ai=— (7=0) andT=c (7==) are
the spacelike boundary~ of the spacetime and the cosmo-
logical future horizon, respectively. Alternatively, we can
cover the other half of the de Sitter hyperboloid by setting sinhAT=tan(ax 7) (12)
A7=—e M. In this caseT=—x (r=—x) and T=% (7 '

=0) are the cosmological past horizon and the spacelikgq, (12) is cast in the form

boundaryZ * of the spacetime. Settingt=1/(\7) the line

element in Eq(3) becomes d?=—dT?+a2cosfAT dp?, (13)

where — w/2ax<r<m/2a\. Equation (11) describes the
whole de Sitter hyperboloi2). The spacelike coordinaje
tan be either periodic or defined on the real line. Equation
(12) corresponds to the spherical slicing of higher dimen-
sional de Sitter spacetinjd,2]. Setting

1 a0 where —o<T<o®. The spatial sections ai==*o» (7=
ds’=— )\ztzdt +ATtdX (®)  +m/2aN) areZ* andZ, respectively. Finally, settingt
=asinh\T the dS_ line element becomes

The d$ solution is the analytic continuation—i\ of the 1
2D anti—de Sitter Adgsolution[19]. ds?= — de2+ (a2+\2t2)dp?. (14)
dS_ . Setting a?+\%t?

065008-2
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The dS solution is the analytic continuation— i\, of the  metric must also be a Killing vector of the dilaton field, i.e.,

2D AdS_ solution[19]. &” must be a solution of the scalar Killing equation
Let us conclude this section with a short discussion of the )
global features of 2D de Sitter spacetime. When the space- £"9,0=0. (17)

like coordinate is noncompact gSdS_, and dS are topo- Gi Y th .

logically equivalent to the two-dimensional plane. When the iven ¢¥, the quantity

spacelike coordinate is compact the three spacetimes are to- T,=T,,& V*T,=0 18
pologically distinct. They describe three different cosmologi- prk ’ 18

cal evolutions of a one-dimensional circular universe, dS defines the conserved charge through the equatiort,,

has cylindrical topology and describes a large-to-large radius. £/V,Q. In general, the dilaton gravity modél) admits a
evolution passing through a radius with minimu(finite) K|II|ng vector of the form

size. dgQ (dS_) describes the evolution of a circle with large
radius atT=—o to a circle with zero radius af =« (T &= Foe’d,®, (19
=0).
whereF, is an arbitrary constant. The conserved charge is
IIl. ISOMETRIES OF 2D de SITTER SPACETIME AND =
CONSERVED MASS Q= 70[—)\2(192—(VCD)2]. (20)

The isometry group of 2D de Sitter spacetim&iq2,R).
In the coordinate system of E) the isometry group of dS  Equation(20) is a local and covariant definition of the con-
is described by the Killing vectors served charge. Substituting the,d$lution (3) in Egs.(19)
and(20) the Killing vector and charge read

1
§o=(7.X), £=(02), §_1=(rx,§(72+x2))- E=Fo[2axt+ Br,a(r?+x2)+ Bx+ v], (21)
(15
Q= EVM - B (22)
The SL(2,R) algebra is generated by the operators 2 ay= B,

Lo=7d,+Xdy, Li=20, respectively. As expectec}, is a linear combination of the
three Killing vectors of the metri¢l5). On the boundaries

L ,=mxd,+ L (P+xD)d,. (16) I~ the norm of ¢ satisfies 7°£|=(A+2y)?, where A

=x(ax+ B). Therefore, the Killing vectog” is spacelike on
Lo, Ly, andL_, generate dilatations, translationssnand I+ for any point of the moduli space. Moreover, there is no
special conformal transformations, respectively. Any indevalue of the parameters, 8, and y such thaté is every-
pendent Killing vector defines an independent conserveevhere timelike.
charge. A crucial point is to identify the Killing vector that  Although our model does not admit any global timelike
defines the energy of the solutions. Since we are dealing witKilling vector, Egs.(21) and (22) define a one-to-one map
time-dependent cosmological solutions, we do not expedbetween moduli space of the dilaton and symmetries and
any conserved charge associated with a globally timelik&onserved charges. We can single out solutions with a given
Killing vector. The Killing vectorsé; andé_; are spacelike conserved charge by choosing the subgrougf2,R) that
on the whole de Sitter hyperboloid. The Killing veci#yis leaves the dilaton invariant. Solutions invariant under dilata-
timelike (spacelikg for 7>x? (72<x?). In particular,&, is  tions are obtained by choosing=y=0. In this case the
spacelike on the boundari€s. As was pointed out in Ref. dilaton is
[1] for de Sitter spacetime id>2 dimensions, the absence
of a timelike conserved charge on the spacetime boundaries X
T~ represents a serious obstruction to the implementation of (D:ﬁ;’ (23
the dS/CFT correspondence. Fdr2 a solution to this
problem has been proposed in Ref|, where the conserved and the conserved charge under dilatations Qg =
mass of d$ space is defined as an integral on the surfice — 2Fy(\3)2. We may also require that the dilaton depends

orthogonal to a Killing vecto€ of the boundary metric. This ©Only on time by settinga=pg=0. This singles out the
definition identifies the mass of the dS spacetime with the-translation generator from thfeL(2,R) isometry group of
conserved charge of the theory living in its boundary. How-d%.
ever, the procedure of Rd®B] cannot be implemented inthe ~ Summarizing, we fix the charg@ (up to a multiplicative
dS,/CFT, context because in this case the surfatés a constant by choosing a point in the dilaton moduli space and
point. identify the massM of the cosmological solution witlQ
Using the results of Ref[20], it is straightforward to itself. This procedure is the 2D analogue of that of Réf:
prove that no timelike Killing vector exists on the spacetime!n two dimensions the Killing vector of the boundary metric
boundary of d$. Moreover, any Killing vectoré” of the  is éxg, and the surfacé which is orthogonal t@ is a point.
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The above procedure enables us to calculate the mass ®he asymptotic form of the line element and of the dilaton
dS,, dS_, and dS solutions. If we impose that the dilaton which are invariant under the asymptotic symmetry group
depends only on time, and uses timelike coordinatedp aré

=N2yt=Dy\t for the three different parametrizatiors),

(10), and (14) of dS,. Using this equation in Eq20), we 1 1 .
find M=0 and gnz—WJr?’n(f)WﬂLo(t ),
)\2
M==Fo d5a’, (24 G =N+ (1) + O(1Y),
for d§ and dS., respectively. The magg4) is defined up to Yir (1) L
the overall arbitrary constaf,. The sign ofF can be fixed 9="33 * O(t™"), (27)

by requiringM to be positive for the dS solution (“stabil-

ity” condition). The absolute value df, is determined by
requiring thatM coincides with the mass defined as a bound-
ary integral(see Sec. Y. Together, these two conditions fix
Fo=—1/(\®,).} With this choice the energy is positive,
zero, and negative for dS dS,, and dS , respectively. The The asymptotic deformations of the fields transform as
Killing vector ¢ is

1

A op=p'e—(1+p)e’,
£=(0,-1). (25)

Translations irx have the opposite direction with respectto 5y .=y e+ yy4€’ + p—ze"+ N2(1+p)at,
the usual definition. With the above normalization the charge 2\

Q of dS_ is positive. The spacelike component®&fnd the

stress energy tensor are negative. The stability condition Oyu= ¥iie+2yue +4N%a', (28)
could also be enforced by keeping the usual definition of the

Killing vector, £=(0,1), and reversing the sign of the action ’ e -

(and then of the stress-energy ten$qr). This arbitrariness Vit = Vi€t 2y € +F+2)\ a,

indicates tha) cannot be identified with the physical energy
of the gravity theory in the 2D bulk.

— A ’ €' tr 5 r
IV. ASYMPTOTIC SYMMETRIES OF 2D de SITTER = Heet 3ye = Onet yedyrha T — AN el
SPACETIME
) ) ) In analogy with the AdS/CFT correspondence, we can com-
Let us consider the 2D de Sitter solutiongd¥S., and e the generators of the asymptotic symmetry group. We
dS, . In the coordinate chart(r), wherer=x,o,p, respec-  myst distinguish two cases, depending on whether the space-
tively, for d$,, dS_, and dS , the Killing vectors generat- |ike sections at=const are the one-dimensional sph&fe

ing the asymptotic symmetry group of the metric are (0<r<2m/\) or the real lineR (—oo<r<w).
; O=r=2m/\. For compact spatial sectiorkscan be ex-
f=— ' (nt+ ai(r) LO(t-?) panded in Fourier series in the interya,27/\ ],
t )
) at(r) e(r)= 2, [acog \kr) +bysin(Akr)]. (29

1
— -5
E=eln)+5 g+ O,

(26)  The generators of the group of asymptotic symmetries are

defined by
6= 2 MaActbBi, (30

!Generally, we can choose a differdty for different solutions of
our 2D gravity model, e.ggS, , dS_, anddS,. This would cor- where
respond to a different normalization of the Killing vect@ee be-
low). Here, we choose for simplicity the same normalization for all
solutions. Moreover, the condition thit calculated with Eq(24) 2Analogously to the AdS case, the asymptotic form of the dilaton
coincides with the mass calculated with a boundary integral refield is not invariant under the transformations generated by Eqgs.
quiresF to be the same for all solutions. (26) but changes with a term of the same order of the field itself.

065008-4
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Ac=[kt+O0(t 1) Isin(Akr)d,

1 k?
- o -4
+ )\(1 2)\2t2+o(t ))cos{)\kr)&r, (31

Bkz[—kt+O(t‘1)]coi)\kr)&t+% 1—%;2
+0O(t™%) | sin(AKkr)d, . (32
The algebra of thé\, andB is
[AAT=3 (k=DByy+ 3 (k+ DBy,
[By,Bi]=— 3 (k—1)Bysi+ 3 (k+ 1By,
(33

[Ac.Bl=— 3 (K=DA + 3 (K+DA.

Defining the new generatots,=iA,— By Egs.(33) assume
the standard form of a Virasoro algebra

[LoLd= k=Dl + 15K —Kder, (34

PHYSICAL REVIEW 66, 065008 (2002

ds?=N2dr2—3%(dt+N'dr)2. (39

The 2D space is foliated along the spacelike coordimate
Therefore, the dynamical evolution is generated by the Kill-
ing vectoré". Owing to the normalization of', Eq.(25), the
integration measure alongacquires an overall minus sign.
Up to boundary terms the action becomes

|:—J drdt i(2'—3(Nt2))(c1>'—Nt('b)
N ot
+N(E‘l<'15—2_2'2¢'>—)\22®)}, (40)

where prime and dot denote differentiation with respeat to
andt, respectively. Introducing the conjugated momenta

oL oL

- == 41
5D’ sy (4

Iy
the action reads
I=J drdtf[IIs3' +1e®' —N'H'—=NH"], (42

where

where we have taken into account the possibility of a central

extensionc.
—oo<r<o,. In this casee is expanded in the Laurent
series
+ oo
e(n= 2 adnk (35
k= —o0
The generators of the algebra are defined by
+ o
gzk;_ Aayly, (36)

where
Le=[—k(AD* %t+0(t™ Y],
k(k—1)

2t2

+% (Ar)<+ SN (AN 2+0(t™) |4,. (37)

The algebra is
[Ci,Cm]= (M=) Ly -1 (38)

Defining the new generatots,= — L, ;, Eq.(38) is cast in
the standard forni34).

V. CENTRAL CHARGE

Ht:Hq)C'D_l._IEE,
H'=—Tglls+3 -3 25d -\ 0. (43)

In order to have well-defined functional derivatives the
Hamiltonian must be supplemented by the surface t&rm

H:f dt(N'H'+NH") +J, (44)
where
5J=tlim[N(E_2<i)52—E_15<i>)+N(E_latb)
—NY(ILy 8P —3 811y)]. (45)

In Eqg. (45) we have considered only the contribution of the
t—o boundary. The contribution of the other boundary of
the de Sitter spacetime gives a similar contribution. This sec-
ond boundary is located & 0 (the horizon for the dS. (or

dS, solution andt=— for the dS solution.

Let us calculate the conserved chafeavhich is associ-
ated with the Killing vectord, . The chargeQ will be iden-
tified with the mass of the solution. For the dSolution
(10), we havesd= 6Q=—(\/2)® 53 2. It follows

A 2
Q= 5o, (49

To calculate the central charge we use a canonical realiza-
tion of the asymptotic symmetries. Since the boundary isn agreement with Eq(24). The mass of the dS solution

spacelike, we parametrize the metric as

(14) is Q= —(\/2)Dya2.
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Using Eq.(26) and Eq.(27) in Eq. (45), the variations of where®,, can be identified as the stress energy tensor of the
the charged(e) corresponding to the symmetries generatedone-dimensional boundary CFT. Using the transformation
by the Killing vectors(26) are law of the boundary fielgh we verify that®,, transforms as

a stress-energy tensor with central chafg®.
1+p Up to now we have considered only the contribution of
E)‘( YieOp= 28yt 757’“> the boundary at= . By taking into account the contribu-
tion of the boundary at=0 (see, e.g., Refl17]) the total
47) central charge is

8)(e)=—d,

+ %(6”5[)—6,5[),)}
c=12d,. (54)
The central charge(e,w) can be calculated from the defor- ) ) )
mation algebra The result above can also be obtained by interpreting the
central charge as Casimir ener(jhis method was first used
5,d(€)={J(€),J(w)}pg=J([€,w])+C(€,w). (48) in Ref. [16] for 2D AdS/CFT correspondence and subse-
guently in Ref[10] to calculate the central charge of three-
We calculate the central charge in the alget84) by con-  dimensional de Sitter spacetim@he dS. line element(10)
sidering dS as a deformation of dS The contributions to s related to the dgline element(4) by the coordinate trans-
Eqg. (47) come from the two boundaries & andt=0. formation
Since the central charge has a purely algebraic nature it does

not depend on the deformations that we are considering. The . e te®ho (55
central charge could also be calculated by considering,dS & == X= 27 .72
. : L VAt —a aJy\tc—a
as the deformation of @S In this case the contributions to
Eq. (47) would come from the boundaries &t + . On thet—o boundary the coordinate transformation: o

Substituting Eq(47) in Eq. (48), and evaluating the equa- g
tion on the d§ background solutiond= vy, = yt= ¥44=0

identically), we find eahe
X= . (56)
(I)O an
C , —_— " r__ ! n , 49 . ) . )
(e,0) \ (0’ ~€'w) 49 Equation(56) is the one-dimensional analogue of the plane-

cylinder transformation of a 2D conformal field theory. The
where we have used E@8). Analogously to the 2D AdS  stress-energy tensd,, acquires a term which is propor-

case, the orthogonality problefR1,14] can be solved, when tional to the central charge of the CFT and can be interpreted
the spacelike coordinate is compact, by introducing the as a Casimir energy:

integrated charges

o ( x)z c ( X
~ A\ 2mIN — — Opo— 2| =—
=5 " drace. 50 =\ d) O 12l do

where{o,x} is the Schwarzian derivative. Substituting Eq.
In this section we will only consider a periodic The non-  (56) in Eq. (57), and recalling tha® ,,= —\M=0 (0,,=
compact case will be briefly discussed at the end of the sec- \M = —3®,a?\?) for dS, (dS_), we obtain the result

2

{o.x}, (57)

tion. The algebrd33) has the central extension (54).
Let us conclude this section by discussing the noncompact
c(A,A))=c(By,B))=0, case. If—oo<r <o the measure of the spacetime boundaries
diverges. As a consequence, the integrated chagg®sdi-
C(A,B)) =Dkl e (51) verge and a complete set of normalizable functidpg)

does not exist. Therefore, some kind of regularization is
The central charge of the Virasoro algeltgd) is found by  needed. In principle, one can solve the problem by introduc-

shifting theL, operator by a constant. The result is ing either an infrared cutoftand subtracting the divergent
part or weight functions in Eq(50). A detailed discussion of
C=24D,. (52)  the noncompact case is, however, beyond the purpose of this

paper and we leave it for further investigations.
The central charge of de Sitter spacetime is positive and

equal to tha’; of anti—de Sitter spa_ce_time. Following Ref. VI. ENTROPY OF de SITTER SPACETIME
[22], we can integrate locally the variati@d7) near the d§
background solutiond(e€)=—®y(e"p—€'p’)/\. Sinced is The solution(10) can be continued across the horizsn
defined up to a total derivative, it follows <a’/\?%
29, P |
J(6)=_T6p”=6rr, (53 dsz=—(a —\t9)do +m, O=>D Nt. (58

065008-6
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Inside the horizon (o) is spacelikgtimelike). The metricis  us consider the field equations of the dilaton
regular and admits the timelike Killing vectgg=d/do. The 5
dilaton has a naked timelike singularitytat 0, which is the V.V, @ =-2\"g,,®. (63)
lower-dimensional analogue of the conical singularity of
three-dimensional de Sitter spacetime.

The temperaturd, is the inverse of the perio@ that
must be assigned to the radial coordinate to avoid the conic
singularity in the Euclidean section, i.e.,

2D dilaton gravity has no propagating physical degrees of

freedom: If we restrict ourselves to classical configurations,
nd fix the diffeomorphism invariance of the theory, the di-
ton does not propagate. However, we allow dilaton defor-

mations on the one-dimensional boundary of figandy

1 dg \a fields in Eq.(27)]. These deformations correspond to pure
W= dw =—. (590 gauge and off-shell dilaton propagation on the spacetime
2w dt |, 2w boundary. Therefore, we require that the dilaton satisfies the

) ) . trace equation
The entropy can be calculated by using the Lorentzian action

(see Ref.[9]). The Euclidean formalism of Gibbons and V2D =—2\?®, (64)

Hawking [5] is not suitable because the Euclidean action

vanishes identically. The bulk term is identically zero on theinstead of the full equations of motid63). Equation(64) is

field equations, and the Euclidean,d®vo spherg has no the equation of motion of a scalar field with negative mass-

boundary contribution. The Lorentzian actibiis [23] squaredm”= —2\* and describes the propagation of a ta-
chyonic scalar field in 2D de Sitter spacetime. Consider Egs.

1 (4), (9), and(13), wherer =x, o, andp, respectively. Owing
I= EJM V=gdx®(R-2)%) to the presence of the cosmological horizon, no correlators
betweenr e 7~ andr’ e Z™ exist for d§ and dS . On the
contrary, dS covers the whole de Sitter spacetime and non-
+ LM Vhdod(K=Ko), (60 trivial correlators betweeneZ~ andr’ e Z " exist. Let us
deal with the three cases, separately.

whereh is the metric at the boundari = —gw/z U0 IS (i) d%. In the background4) Eq. (64) reads

the trace of the extrinsic curvature evaluated at the boundary (— 2+ N+ Ti2) D= — 2\ 2D (65)
t—oo, andKj is the trace of the extrinsic curvature relative T T ' '

to the background metric gSThe unusual sign in front of \WhenT— —, the third term on the left-hand side of Eq.

the boundary integral is due to the choice of normalizationes) is negligible. On theZ ~ boundary the dilaton is
(25). Computing Eq(60) on the solution10), the boundary

term gives | = —(Bdy a?)/2=—wdya. By analytically D~ p_q(r)e M. (66)
continuing the Gibbs-Duhem relation, we find . o
Subleading terms can be evaluated by expanding pow-

S=BM—1=27dja=27d,, (61)  ers ofeM:

where®,, is the value of the dilaton at the horizon. Equation - T
(61) is consistent with the thermodynamical relatid ‘I’:n;_l dn(r)e™ . (67)
=JM/dS. The entropy can also be computed by applying
Cardy formula to the boundary conformal field theory with sypstituting Eq(67) in Eq. (65) we find
the central chargés4):
D=¢ y(r)e T+ ¢y (r)er+0(e?), (68)

cl
S=2m \/?02277‘1303- (62)  where the index denotes the conformal dimension of the
fields ¢». dSy has no boundary fields with conformal dimen-
Equation(62) is in agreement with the semiclassical resultSionsh=0. The conformal weights of subleading and lead-
(62). ing terms in Eq(68) are consistent with the conformal trans-
formation laws of p and y,, with weights h=*1,
respectively. It is interesting to compare the boundary condi-
tion (68) with that of a generic scalar field of massthat
In this section we discuss ¢8CFT; correspondence by propagates on 2D de Sitter spacetiii@]: ® ~e"=*T, where
computing correlation functions on the spacetime bulk andh.=(1* J1—4m?/\?)/2. Settingm?=—2\? we find h.
on its boundary. In higher-dimensional de Sitter spacetimes- —1 andh_=2. However, the previous result is only valid
this program is accomplished by studying correlation func-for scalar fields with positive squared mass. For tachyonic
tions of dual boundary operators induced by an externafields we haveh,>1 and the term of weight, is sublead-
field. The 2D model1), thanks to the presence of a scalaring with respect tog,.
degree of freedonithe dilaton field®), enables us to com- Changing the sign in the exponents of E@b, (65), and
pute correlation functions which are induced on the bound{66) we obtain the behavior of the dilaton on the boundary
ary by the gravitational degrees of freedom of the bulk. LetZ":

VIl. BOUNDARY CORRELATORS
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D= (r)erT+op_(r)e T+0(e 2T, (69)
Leading and subleading terms of the dilaton®n are in-
terchanged with respect t6~. Generalizing to two dimen-
sions the dS/CFT proposal of Rdfl], the two-point cor-
relator of an operator©O, on 7~ is derived from the
expression

J= lim

T——o

fﬁdrdr’[e‘”(T”')CD(T,r)

X tG(T,r, T',r") ¢+ D(T' ;r")]r=7/, (70
where G is the de Sitter invariant Green functio{Bee the
Appendix) Using Egs.(A6a), (Al1l), and (68) in Eq. (70),
we find

T=ko| _drar's 416 4(r) 7

wherex is a constant. The two-point correlator of an opera-

tor O, dual to¢ _; is the coefficient of the quadratic term in
Eq. (71):

!
Ko

(r—r")*

(Op(NO(r"))= (72)

Equation(72) is the two-point correlator of a conformal op-
erator of dimensiorh=2. The two-point correlator off *

PHYSICAL REVIEW D 66, 065008 (2002

(Oy(r)Oy(r"))= (74)

sinkf‘7(r—r’)

Since dg and dS are locally identical, the correlatof32)

and (74) have the samér=r—r’—0, short distance, be-
havior. The global features of the spacetime become manifest
at largeAr. The sinh behavior in Eq.74) describes a ther-
mal CFT with temperature equal to the Hawking temperature
of the cosmological horizon of dS This result can be ex-
plained in CFT as follows. Equatia®6) maps the boundary

of dS on the boundary of dS. This transformation can be
interpreted as the one-dimensional analogue of the plane-
cylinder maphz=exp@w) of a 2D CFT, wheren=—w=

—ir. In complex coordinates E474) becomes

’

(Oy(r)Oy(r"))= (75

[sin( 7 TAW)sin(7TyAw)]?’

whereAw=w—w' and T is the Hawking temperature of
the cosmological horizort59). The appearance of thermal
correlators can also be understood in terms of the 2D gravity
theory: dS can be considered as the thermalization qof dS
temperaturel y=\a/27 (see Sec. )l

(iii) dS, . In the background13) the equation of motion
of the dilaton is

— 92— Ntanh\T)dr+—=—————3% | D= —2\2D .
T T a2cosR(AT)

(76)

can be computed in a similar way. The relevant boundary

field is ¢,(r) and the dual operator ch™ satisfies Eq(72).

On the spacetime boundari@s and Z© we obtain again

The previous results show that a tachyonic perturbation oEgs.(68) and(69), respectively. Using Eq$A6a) and(A11)
the bulk corresponds to a boundary operator of positive conef the Appendix, the two-point boundary correlator is
formal dimension. This feature is a consequence of the ho-

lographic correspondence between gravity on the 2D bulk K

and CFT on the boundary. Technically, the result follows

from a general property of the integral in E§0). The dual
operator of a boundary field with conformal dimension
has dimensionh, .

positive conformal dimensiorh(.>0). This property seems
to be a general feature of the integfa@0) and we expect it to
hold for dS/CFT duality in any dimension.

(i) dS_. In this case de Sitter spacetime is described b%atisﬁes th

the metric(9). Equation(64) is

d=—-2)\%D.
(73

1
— 92—\ cOth A T) 9y +—————3?
T T aZsintt(\T)

SettingT— =« in Eq. (73), we find that the asymptotic be-
havior of the dilaton is given by Eq$68) and (69) for 7~
andZ", respectively. The dShoundary correlators are com-
puted by substituting Eq$68) and (69) and the asymptotic
expression of5 andP given in the Appendix in the integral
(70):

Therefore, the tachyonic perturbation
(h_<0) is in correspondence with a boundary operator o

<O¢(r)0¢(r’)>=—a>\ , (77)

sin47(r—r’)

wherer,r’ eZ~ orr,r’ eZ*. Equation(77) is the correlator

tfor an operator of conformal dimensidn=2. In the dS

case we must also consider correlators between pojnts
wherer eZ~ andr’ eZ™*. This corresponds to 16— —o
andT’—< in Eq. (70). The functionP defined in Eq.(A5)
e equation

P(T,r,T',r")y==P(T,r,=T',r'+m). (79

Using Eq.(78) forreZ~ andr’eZ*, J becomes

j=K;f drdr’ ¢ 41 o(r' +m) —————.
sift—(r—r")
2
(79

Analogously to the three-dimensional case of Réif, we
can define the inverted boundary field_;(r)=¢_,(r
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+) and find the nontrivial correlations between points ofwhere m?=—2\2. Analogously to higher-dimensional
the two different boundaries. The correlator of boundary opcases, theSQ(1,1) invariant Green function can only be a
erators dual tap_(r') and ¢_,(r) coincide with the two- function of the geodesic distancX,X"), whereX,X" are
point correlator on a single bounda@??)_ coordinates of the three-dimensional Minkowski embedding
spacetime. It is convenient to introduce the quantity

VIIl. CONCLUSIONS P(X,X")=N2X"X"Byrg, (A3)

In this paper we have investigated the 2D dS/CFT corre-
spondence. The de Sitter conserved mass has been defined
exploiting a peculiar feature of 2D dilaton gravity, namely
the existence of a locally defined, general covariant con
served charge. The dBCFT,; duality has been implemented
in analogy with the Adg/CFT, correspondence. We have
shown that the group of the asymptotic symmetries of idS
equal to that of Adgand is generated by the same Virasoro
algebra. The statistical entropy of the de Sitter cosmological
horizon coincides with the statistical entropy of the Adsfor ds
black hole. These results follow from the interpretation of de -
Sitter spacetime as “Wick rotated” AdS spacetime. Similar AX=Ccosh\T
conclusions have been obtained for higher-dimensional de '
Sitter spacetime in Ref$1,9,12,10. A major difference be-
tween 2D de Sitter spacetime and the higher-dimensional
cases is the absence, in the former, of an upper bound for tré%d for ds.
entropy. The entropy61) grows without limit witha. The
origin of the difference can be understood by comparing de AX=CoShATSinAr.  AY=cosh\T COSAr
Sitter in two and three dimensions. The behavior of the en- ' ’
tropy as a function o& in d=2 andd=3 is identical. How-
ever, the presence of the conical singularitylian3 provides
the upper bound=1. Ford=2 the spacelike coordinatds Substituting Eqs(A4) in Eq. (A3) we find for d$
not a radial coordinate. Therefore, no “natural” normaliza-
tion can be imposed on it. In R€f7] it was argued that this
feature follows from the symmetry under dilatations of the
model and is related with the impossibility of establishing an. 4s
area law in two dimensions. -

In the second part of the paper we have computed the 5 _ ' i ; / e
boundary correlators of the model. We have found that the P=cosh\T coshA T’ —sinhA(T)sinhA T coshr(r—=r"),
dS/CFT correspondence leads to boundary operators of posi- (A5b)
tive conformal dimension for 2D bulk tachyonic perturba-
tions. Noncausal tachyonic propagation in the bulk are usuand for dS
ally expected to lead to boundary operators with negative
dimension, i.e., to correlators which usuallly describe a non- P=cosh\TcoshAT'cosA(r—r")
unitary CFT, such agO(r)O(r’))~(r—r')', wherel>0. e ; /

The positivity of the conformal dimension seems to be SINAAT SINAA T (ASc)
strongly related to the holographic nature of the dS/CFT cor(]-he asymptotic behavior d? at T— — is for dS,
respondence. It would be very interesting to understan

whether this property is a peculiarity of the 2D case or a 2

ere P=cos\d and 7,g=(1,1,—1) is the metric of the
three-dimensional Minkowski spacetime. Using E@) P
can be calculated for the three different parametrizations of
dS,. We have for d§

AX=e Mxr, AY=costAT—e"(Ar)?/2,

NZ=—sint\T+e *(Ar)?/2, (Ada)

N Y=sinh\T sinhAr,

NZ=sinh\T coshhr, (A4b)

NZ=sinh\T. (Adc)

P=cosh\(T—T')—\2e M T)(r —r")2/2, (A5a)

A ,
general feature of the dS/CFT duality. lim P=- ?e‘m” Nr—r")?, (AGa)
T,T ——
APPENDIX for ds._
In this appendix we derive the 2D, de Sitter—invariant, ,
Hadamard two-point function for the dilaton field im P—— %e—)\(ﬂ—T')SinhZ)\ (r=r’) . (A6b)
L p——
G(X,X")=(0{P(X),P(X")}|0). (A1)
and for dS.

Equation(Al) is the solution of the equation

1 ’ (r_r,)
H —_ “NMT+T")gj
lim P 5€ SIA >

(A6cC)
(V2—m?)G(X,X")=0, (A2) T
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The behavior of°P on Z* can be obtained by changing the linearly with P and is singular in thé —oe limit. This leads
signs of T andT’ in Eqs.(A6). For a generic scalar field of  to divergences in Eq(70). The singularity can be removed
massm propagating in 2D de Sitter spacetime, E42) is by imposing the boundary conditiory=0. (It is not clear
[2,24] whether other physically acceptable boundary conditions ex-
ist.) The first term in Eq.(A9) describes a Green function
with two singularities aP= *=1. The behavior at short dis-
tances is that of a scalar field in a 2D spacetime. Near
=1, i.e., at a geodesic distande=0, G is

1P2d2 2Pd mZGP—O A7
(—)ﬁ— d_P_F()_' (A7)

The solution of Eq(A7) is
lim G=2c;In(\d). (A10)
G:RERh+,h,,1,Z), (A8) P—1

where F is the hypergeometric function=(1+P)/2, and

h.=(1+1I—4m?\?)/2. For the dilaton field 2= The integration constam; can be determined by comparing

. . Eqg. (A10) to the usual short-distance behavior in two-
—2\?) the general solution of EqA7) can be expressed in . . B . .
terms of elementary functions: dimensionsG= — 1/27 In(Ad). The behavior aP—x is

P+1
2—PlIn

G(P)=cy 51

+CyP, (A9) G(P)=—§§+O(P‘4). (A11)

wherecq,c, are integration constants. The Green functi&n
is the sum of two independent terms. The second term growsinally, the €,=0) Green function is an even function Bf
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