165 research outputs found

    AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL

    Get PDF
    Chronic myelogenous leukaemia (CML) and Philadelphia chromosome positive (Ph+) acute lymphoblastic leukaemia (ALL) are caused by the BCR-ABL oncogene. Imatinib inhibits the tyrosine kinase activity of the BCR-ABL protein and is an effective, frontline therapy for chronic-phase CML. However, accelerated or blast-crisis phase CML patients and Ph+ ALL patients often relapse due to drug resistance resulting from the emergence of imatinib-resistant point mutations within the BCR-ABL tyrosine kinase domain. This has stimulated the development of new kinase inhibitors that are able to over-ride resistance to imatinib. The novel, selective BCR-ABL inhibitor, AMN107, was designed to fit into the ATP-binding site of the BCR-ABL protein with higher affinity than imatinib. In addition to being more potent than imatinib (IC50<30 nM) against wild-type BCR-ABL, AMN107 is also significantly active against 32/33 imatinib-resistant BCR-ABL mutants. In preclinical studies, AMN107 demonstrated activity in vitro and in vivo against wild-type and imatinib-resistant BCR-ABL-expressing cells. In phase I/II clinical trials, AMN107 has produced haematological and cytogenetic responses in CML patients, who either did not initially respond to imatinib or developed imatinib resistance. Dasatinib (BMS-354825), which inhibits Abl and Src family kinases, is another promising new clinical candidate for CML that has shown good efficacy in CML patients. In this review, the early characterisation and development of AMN107 is discussed, as is the current status of AMN107 in clinical trials for imatinib-resistant CML and Ph+ ALL. Future trends investigating prediction of mechanisms of resistance to AMN107, and how and where AMN107 is expected to fit into the overall picture for treatment of early-phase CML and imatinib-refractory and late-stage disease are discussed

    The use of 2D fingerprint methods to support the assessment of structural similarity in orphan drug legislation.

    Get PDF
    In the European Union, medicines are authorised for some rare disease only if they are judged to be dissimilar to authorised orphan drugs for that disease. This paper describes the use of 2D fingerprints to show the extent of the relationship between computed levels of structural similarity for pairs of molecules and expert judgments of the similarities of those pairs. The resulting relationship can be used to provide input to the assessment of new active compounds for which orphan drug authorisation is being sought

    Nilotinib and Imatinib Are Comparably Effective in Reducing Growth of Human Eosinophil Leukemia Cells in a Newly Established Xenograft Model

    Get PDF
    We developed a xenograft model of human Chronic Eosinophilic Leukemia (CEL) to study disease progression and remission-induction under therapy with tyrosine kinase inhibitors using imatinib and nilotinib as examples. The FIP1L1/PDGFRA+ human CEL cell lineEOL-1 was injected intravenously into scid mice, and MR imaging and FACS analysis of mouse blood samples were performed to monitor disease development and the effects of imatinib and nilotinib. Organ infiltration was analyzed in detail by immunohistochemistry after sacrifice. All animals developed CEL and within one week of therapy, complete remissions were seen with both imatinib and nilotinib, resulting in reduced total tumor volumes by MR-imaging and almost complete disappearance of EOL-1 cells in the peripheral blood and in tissues. The new model system is feasible for the evaluation of new tyrosine kinase inhibitors and our data suggest that nilotinib may be a valuable additional targeted drug active in patients with FIP1L1/PDGFRA+ CEL

    Prediction of specificity-determining residues for small-molecule kinase inhibitors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Designing small-molecule kinase inhibitors with desirable selectivity profiles is a major challenge in drug discovery. A high-throughput screen for inhibitors of a given kinase will typically yield many compounds that inhibit more than one kinase. A series of chemical modifications are usually required before a compound exhibits an acceptable selectivity profile. Rationalizing the selectivity profile for a small-molecule inhibitor in terms of the specificity-determining kinase residues for that molecule can be an important step toward the goal of developing selective kinase inhibitors.</p> <p>Results</p> <p>Here we describe S-Filter, a method that combines sequence and structural information to predict specificity-determining residues for a small molecule and its kinase selectivity profile. Analysis was performed on seven selective kinase inhibitors where a structural basis for selectivity is known. S-Filter correctly predicts specificity determinants that were described by independent groups. S-Filter also predicts a number of novel specificity determinants that can often be justified by further structural comparison.</p> <p>Conclusion</p> <p>S-Filter is a valuable tool for analyzing kinase selectivity profiles. The method identifies potential specificity determinants that are not readily apparent, and provokes further investigation at the structural level.</p

    Crystal Structures of the FAK Kinase in Complex with TAE226 and Related Bis-Anilino Pyrimidine Inhibitors Reveal a Helical DFG Conformation

    Get PDF
    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase required for cell migration, proliferation and survival. FAK overexpression has been documented in diverse human cancers and is associated with a poor clinical outcome. Recently, a novel bis-anilino pyrimidine inhibitor, TAE226, was reported to efficiently inhibit FAK signaling, arrest tumor growth and invasion and prolong the life of mice with glioma or ovarian tumor implants. Here we describe the crystal structures of the FAK kinase bound to TAE226 and three related bis-anilino pyrimidine compounds. TAE226 induces a conformation of the N-terminal portion of the kinase activation loop that is only observed in FAK, but is distinct from the conformation in both the active and inactive states of the kinase. This conformation appears to require a glycine immediately N-terminal to the “DFG motif”, which adopts a helical conformation stabilized by interactions with TAE226. The presence of a glycine residue in this position contributes to the specificity of TAE226 and related compounds for FAK. Our work highlights the fact that kinases can access conformational space that is not necessarily utilized for their native catalytic regulation, and that such conformations can explain and be exploited for inhibitor specificity

    Analyzing the Impacts of Off-Road Vehicle (ORV) Trails on Watershed Processes in Wrangell-St. Elias National Park and Preserve, Alaska

    Get PDF
    Trails created by off-road vehicles (ORV) in boreal lowlands are known to cause local impacts, such as denuded vegetation, soil erosion, and permafrost thaw, but impacts on stream and watershed processes are less certain. In Wrangell-St. Elias National Park and Preserve (WRST), Alaska, ORV trails have caused local resource damage in intermountain lowlands with permafrost soils and abundant wetlands and there is a need to know whether these impacts are more extensive. Comparison of aerial photography from 1957, 1981, and 2004 coupled with ground surveys in 2009 reveal an increase in trail length and number and show an upslope expansion of a trail system around points of stream channel initiation. We hypothesized that these impacts could also cause premature initiation and headward expansion of channels because of lowered soil resistance and greater runoff accumulation as trails migrate upslope. Soil monitoring showed earlier and deeper thaw of the active layer in and adjacent to trails compared to reference sites. Several rainfall-runoff events during the summer of 2009 showed increased and sustained flow accumulation below trail crossings and channel shear forces sufficient to cause headward erosion of silt and peat soils. These observations of trail evolution relative to stream and wetland crossings together with process studies suggest that ORV trails are altering watershed processes. These changes in watershed processes appear to result in increasing drainage density and may also alter downstream flow regimes, water quality, and aquatic habitat. Addressing local land-use disturbances in boreal and arctic parklands with permafrost soils, such as WRST, where responses to climate change may be causing concurrent shifts in watershed processes, represents an important challenge facing resource managers

    Acute-Phase-HDL Remodeling by Heparan Sulfate Generates a Novel Lipoprotein with Exceptional Cholesterol Efflux Activity from Macrophages

    Get PDF
    During episodes of acute-inflammation high-density lipoproteins (HDL), the carrier of so-called good cholesterol, experiences a major change in apolipoprotein composition and becomes acute-phase HDL (AP-HDL). This altered, but physiologically important, HDL has an increased binding affinity for macrophages that is dependent on cell surface heparan sulfate (HS). While exploring the properties of AP-HDL∶HS interactions we discovered that HS caused significant remodeling of AP-HDL. The physical nature of this change in structure and its potential importance for cholesterol efflux from cholesterol-loaded macrophages was therefore investigated. In the presence of heparin, or HS, AP-HDL solutions at pH 5.2 became turbid within minutes. Analysis by centrifugation and gel electrophoresis indicated that AP-HDL was remodeled generating novel lipid poor particles composed only of apolipoprotein AI, which we designate β2. This remodeling is dependent on pH, glycosaminoglycan type, is promoted by Ca2+ and is independent of protease or lipase activity. Compared to HDL and AP-HDL, remodeled AP-HDL (S-HDL-SAA), containing β2 particles, demonstrated a 3-fold greater cholesterol efflux activity from cholesterol-loaded macrophage. Because the identified conditions causing this change in AP-HDL structure and function can exist physiologically at the surface of the macrophage, or in its endosomes, we postulate that AP-HDL contains latent functionalities that become apparent and active when it associates with macrophage cell surface/endosomal HS. In this way initial steps in the reverse cholesterol transport pathway are focused at sites of injury to mobilize cholesterol from macrophages that are actively participating in the phagocytosis of damaged membranes rich in cholesterol. The mechanism may also be of relevance to aspects of atherogenesis

    Designing a HER2/neu promoter to drive α1,3galactosyltransferase expression for targeted anti-αGal antibody-mediated tumor cell killing

    Get PDF
    INTRODUCTION: Our goal was to specifically render tumor cells susceptible to natural cytolytic anti-αGal antibodies by using a murine α1,3galactosyltransferase (mαGalT) transgene driven by a designed form of HER2/neu promoter (pNeu), the transcription of which is frequently observed to be above basal in breast tumors. Indeed, the αGalT activity that promotes Galα1,3Galβ1,4GlcNAc-R (αGal) epitope expression has been mutationally disrupted during the course of evolution, starting from Old World primates, and this has led to the counter-production of large amounts of cytotoxic anti-αGal antibodies in recent primates, including man. METHOD: Expression of the endogenous c-erbB-2 gene was investigated in various cell lines by northern blotting. A mαGalT cDNA was constructed into pcDNA3 vector downstream of the original CMV promoter (pCMV/mαGalT) and various forms of pNeu were prepared by PCR amplification and inserted in the pCMV/mαGalT construct upstream of the mαGalT cDNA, in the place of the CMV promoter. These constructs were transferred into HEK-293 control and breast tumor cell lines. Stably transfected cells were analyzed by northern blotting for their expression of αGalT and c-erbB-2, and by flow cytometry for their binding with fluorescein isothiocyanate-conjugated Griffonia simplicifolia/isolectin B4. RESULTS: We show that expression of the mαGalT was up- or down-modulated according to the level of endogenous pNeu activity and the particular form of constructed pNeu. Among several constructs, two particular forms of the promoter, pNeu250 containing the CCAAT box and the PEA3 motif adjacent to the TATAA box, and pNeu664, which has three additional PEA3 motifs upstream of the CCAAT box, were found to promote differential αGalT expression. CONCLUSION: Our results strengthen current concepts about the crucial role played by the proximal PEA3 motif of pNeu, and may represent a novel therapeutic approach for the development of targeted transgene expression

    Discrete breathers in ϕ4\phi^4 and related models

    Full text link
    We touch upon the wide topic of discrete breather formation with a special emphasis on the the ϕ4\phi^4 model. We start by introducing the model and discussing some of the application areas/motivational aspects of exploring time periodic, spatially localized structures, such as the discrete breathers. Our main emphasis is on the existence, and especially on the stability features of such solutions. We explore their spectral stability numerically, as well as in special limits (such as the vicinity of the so-called anti-continuum limit of vanishing coupling) analytically. We also provide and explore a simple, yet powerful stability criterion involving the sign of the derivative of the energy vs. frequency dependence of such solutions. We then turn our attention to nonlinear stability, bringing forth the importance of a topological notion, namely the Krein signature. Furthermore, we briefly touch upon linearly and nonlinearly unstable dynamics of such states. Some special aspects/extensions of such structures are only touched upon, including moving breathers and dissipative variations of the model and some possibilities for future work are highlighted

    The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis

    Get PDF
    EphB4 and its cognitive ligand ephrinB2 play an important role in embryonic vessel development and vascular remodeling. In addition, several reports suggest that this receptor ligand pair is also involved in pathologic vessel formation in adults including tumor angiogenesis. Eph/ephrin signaling is a complex phenomena characterized by receptor forward signaling through the tyrosine kinase of the receptor and ephrin reverse signaling through various protein–protein interaction domains and phosphorylation motifs of the ephrin ligands. Therefore, interfering with EphR/ephrin signaling by the means of targeted gene ablation, soluble receptors, dominant negative mutants or antisense molecules often does not allow to discriminate between inhibition of Eph/ephrin forward and reverse signaling. We developed a specific small molecular weight kinase inhibitor of the EphB4 kinase, NVP-BHG712, which inhibits EphB4 kinase activity in the low nanomolar range in cellular assays showed high selectivity for targeting the EphB4 kinase when profiled against other kinases in biochemical as well as in cell based assays. Furthermore, NVP-BHG712 shows excellent pharmacokinetic properties and potently inhibits EphB4 autophosphorylation in tissues after oral administration. In vivo, NVP-BHG712 inhibits VEGF driven vessel formation, while it has only little effects on VEGF receptor (VEGFR) activity in vitro or in cellular assays. The data shown here suggest a close cross talk between the VEGFR and EphR signaling during vessel formation. In addition to its established function in vascular remodeling and endothelial arterio-venous differentiation, EphB4 forward signaling appears to be an important mediator of VEGF induced angiogenesis since inhibition of EphB4 forward signaling is sufficient to inhibit VEGF induced angiogenesis
    corecore