154 research outputs found

    The U.S. Arctic Observing Viewer: A Web-Mapping Application for Enhancing Environmental Observation of the Changing Arctic

    Get PDF
    Although much progress has been made with various Arctic Observing efforts, assessing that progress can be difficult. What data collection efforts are established or underway? Where? By whom? To help meet the strategic needs of programs such as the U.S. Study of Environmental Arctic Change (SEARCH), the Arctic Observing Network (AON), Sustaining Arctic Observing Networks (SAON) and related initiatives, an update has been released for the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org). This web mapping application and information system has begun to compile the who, what, where, and when for thousands of data collection sites (such as boreholes, ship tracks, buoys, towers, sampling stations, sensor networks, vegetation sites, stream gauges, and observatories) wherever marine, terrestrial, or atmospheric data are collected. Contributing partners for this collaborative resource include the U.S. NSF, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, CAFF, IASOA, INTERACT, and others. While focusing on U.S. activities, the AOV welcomes information exchange with international groups for mutual benefit. Users can visualize, navigate, select, search, draw, print, and more. AOV is founded on principles of interoperability, with open metadata and web service standards, so that agencies and organizations can use AOV tools and services for their own purposes. In this way, AOV will reinforce and complement other distributed yet interoperable cyber-resources and will help science planners, funding agencies, researchers, data specialists, and others to assess status, identify overlap, fill gaps, optimize sampling design, refine network performance, clarify directions, access data, coordinate logistics, collaborate, and more in order to meet Arctic Observing goals.Malgré les progrès réalisés dans le cadre de nombreux efforts d’observation de l’Arctique, les progrès peuvent être difficiles à évaluer. Quelles initiatives de collecte de données sont en cours ou sont établies? À quel endroit? Et qui gère ces initiatives? Pour aider à répondre aux besoins stratégiques de programmes comme ceux de l’organisme américain Study of Environmental Arctic Change (SEARCH), du réseau Arctic Observing Network (AON), des réseaux Sustaining Arctic Observing Networks (SAON) et d’autres programmes connexes, on a procédé à la mise à jour de l’Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org). Ce système d’information jumelé à une application de mappage sur le Web a amorcé la compilation des coordonnées et des renseignements se rapportant à des milliers de sites de collecte de données (comme les trous de forage, les trajets de navires, les bouées, les tours, les stations d’échantillonnage, les réseaux de capteurs, les sites de végétation, les fluviomètres et les observatoires) où des données marines, terrestres ou atmosphériques sont prélevées. Parmi les partenaires qui collaborent à cette ressource, notons U.S. NSF, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, CAFF, IASOA, INTERACT et d’autres encore. Bien que l’AOV se concentre sur les activités américaines, il accepte l’échange d’information avec des groupes internationaux lorsqu’il existe des avantages mutuels. Les utilisateurs peuvent visualiser les données, naviguer dans le système, faire des sélections et des recherches, dessiner, imprimer et ainsi de suite. L’AOV fonctionne moyennant des principes d’interopérabilité, avec des métadonnées ouvertes et des normes de service sur le Web afin que les organismes et les organisations puissent utiliser les outils et les services de l’AOV pour leurs propres fins. De cette façon, l’AOV sera en mesure de consolider et de compléter d’autres cyberressources à la fois réparties et interopérables, en plus d’aider les planificateurs de la science, les bailleurs de fonds, les chercheurs, les spécialistes des données et d’autres encore à évaluer les statuts, à repérer les dédoublements, à combler les écarts, à optimiser les plans d’échantillonnage, à raffiner le rendement des réseaux, à clarifier les consignes, à accéder aux données, à coordonner la logistique, à collaborer et ainsi de suite afin de répondre aux objectifs d’observation de l’Arctique

    The human polyomavirus, JCV, uses serotonin receptors to infect cells

    Get PDF
    The human polyomavirus, JCV, causes the fatal demyelinating disease progressive multifocal leukoencephalopathy in immunocompromised patients. We found that the serotonergic receptor 5HT2AR could act as the cellular receptor for JCV on human glial cells. The 5HT2Areceptor antagonists inhibited JCV infection, and monoclonal antibodies directed at 5HT2Areceptors blocked infection of glial cells by JCV, but not by SV40. Transfection of 5HT2Areceptor–negative HeLa cells with a 5HT2A receptor rescued virus infection, and this infection was blocked by antibody to the 5HT2A receptor. A tagged 5HT2A receptor colocalized with labeled JCV in an endosomal compartment following internalization. Serotonin receptor antagonists may thus be useful in the treatment of progressive multifocal leukoencephalopathy

    Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4

    Get PDF
    Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species
    • …
    corecore