
strand and positioning Dcr-2 near the 5¶ end

of the strand to be loaded into the RISC. In

this model, R2D2, as a component of the

Dcr-2/R2D2 heterodimer, is the primary protein

sensor of siRNA thermodynamic asymmetry.

How does the RLC, with the Dcr-2/R2D2

heterodimer positioned asymmetrically on

the siRNA, progress to the RISC? Argonaute

2 (Ago2) is a È130-kD protein that is a core

component of the RISC (22) and is required

for siRNA unwinding (14). We found that a

È130-kD protein was crosslinked to siRNA

when the guide strand contained 5-iodouracil

at p20 (asterisk in Fig. 2C, siRNAs c, d, e,

and g). The È130-kD protein was photo-

crosslinked only to the guide strand of the

siRNA (Fig. 4), which suggests that this

protein is a component of the RISC. The

È130-kD protein was immunoprecipitated

with antibodies to Ago2 but not to Ago1 (fig.

S3A) and was not observed in embryos lacking

both maternal and zygotic Ago2 (ago2414, fig.

S3B). Thus, the È130-kD protein is Ago2.

When R2D2 and Ago2 were photocross-

linked to siRNAs b or e (which contain 5-

iodouracil at p20 of the passenger or the

guide strand), R2D2 was bound to the 3¶

end of the guide strand and Dcr-2 to the 3¶

end of the passenger strand at early times in

the reaction (Fig. 4A). Later, binding of R2D2

and Dcr-2 decreased concurrently, accompa-

nied by a corresponding increase in binding of

Ago2 to the 3¶ end of the guide strand. In

ago2414 lysates, R2D2 binding to the 3¶ end of

the guide strand and Dcr-2 binding to the 3¶

end of the passenger strand did not decrease

with time (fig. S4A); this finding suggests

that binding of Ago2 facilitates the release of

the heterodimer from siRNA.

The siRNA bound by Ago2 is single-

stranded, because Ago2, when photocross-

linked to siRNA, was captured by a tethered

2¶-O-methyl oligonucleotide complementary

to the siRNA guide strand (Fig. 4B) (23), as

has been observed for the RISC (7, 23–25).

R2D2 was not captured by the 2¶-O-methyl

oligonucleotide, but was instead recovered in

the supernatant, consistent with R2D2 bind-

ing of double-stranded siRNA.

Our data suggest a model for RISC

assembly. First, R2D2 orients the Dcr-2/

R2D2 heterodimer on the siRNA within the

RLC. As siRNA unwinding proceeds, the

heterodimer is exchanged for Ago2, the core

component of the RISC. Indeed, we cannot

detect single-stranded siRNA in the RLC

assembled in ago2414 lysate (fig. S4, B and

C). We hypothesize that unwinding occurs

only when Ago2 is available, so that siRNA

in the RLC is unwound only when the RISC

can be assembled.
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The Human Polyomavirus, JCV,
Uses Serotonin Receptors

to Infect Cells
Gwendolyn F. Elphick,1 William Querbes,1,2 Joslynn A. Jordan,1,2

Gretchen V. Gee,1,3 Sylvia Eash,1,2 Kate Manley,1,3

Aisling Dugan,1,2 Megan Stanifer,1,3 Anushree Bhatnagar,4
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The human polyomavirus, JCV, causes the fatal demyelinating disease pro-
gressive multifocal leukoencephalopathy in immunocompromised patients. We
found that the serotonergic receptor 5HT2AR could act as the cellular receptor
for JCV on human glial cells. The 5HT2A receptor antagonists inhibited JCV
infection, and monoclonal antibodies directed at 5HT2A receptors blocked
infection of glial cells by JCV, but not by SV40. Transfection of 5HT2A

receptor–negative HeLa cells with a 5HT2A receptor rescued virus infection, and
this infection was blocked by antibody to the 5HT2A receptor. A tagged 5HT2A

receptor colocalized with labeled JCV in an endosomal compartment following
internalization. Serotonin receptor antagonists may thus be useful in the
treatment of progressive multifocal leukoencephalopathy.

The incidence of progressive multifocal leuko-

encephalopathy (PML) has increased 50-fold

since 1979 and now affects nearly 1 in every

200,000 persons (1). The disease is due to

infection of oligodendrocytes by the com-

mon human polyomavirus, JCV (2). Initial

infection with JCV occurs early in childhood

and eventually reaches a seroprevalence of

between 70 and 80% in the adult population.

The initial infection is subclinical, and the

virus establishes a lifelong persistent infec-

tion. At any given time, È5% of the

population is actively excreting virus in the

urine, and JCV is a frequent contaminant of

untreated human sewage (3). PML occurs

almost exclusively in severely immunosup-

pressed patients. The majority of cases occur

in patients with AIDS, and to date there is no

effective treatment (4). PML is initiated

when JCV traffics from peripheral sites, such

as the kidney and lymphoid organs, to the

central nervous system (CNS) by unknown

mechanisms. There is a strong association

between JCV and human B lymphocytes,

and the virus may traffic to the CNS in an
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infected B cell (5–7). Once in the CNS, JCV

infects both oligodendrocytes and astrocytes.

N-linked glycoproteins containing termi-

nal alpha 2-6–linked sialic acid are a critical

component of the JCV receptor (8). The

tissue distribution of this receptor-type sialic

acid strongly correlates with the known

tropism of JCV for oligodendrocytes, astro-

cytes, B-lymphocytes, and kidney epithelial

cells (9). JCV receptor interactions play a

critical role in tropism, because a hybrid SV40

virus containing JCV capsid proteins main-

tains the restricted host range of JCV (10).

Also, unlike the related polyomavirus SV40,

which enters cells by caveolae-dependent

endocytosis, JCV enters cells by a ligand-

inducible clathrin-dependent pathway (11–15).

Chlorpromazine, which blocks clathrin-

dependent endocytosis, and the related com-

pound clozapine effectively block JCV

infection of glial cells (16 ). Both chlorprom-

azine and clozapine belong to a class of drugs

known as serotonin-dopamine inhibitors

(SDIs). Because glial cells express receptors

for both dopamine and serotonin (Fig. 1A), we

hypothesized that JCV may use either sero-

tonin receptors or dopamine receptors to infect

glial cells. To test this hypothesis, glial cells

were treated with increasing concentrations of

the dopamine antagonists bromocriptine and

minaprine, and a dopamine agonist, pergolide.

These agents have generally minimal activity

against serotonin receptors (17, 18). Glial cells

were also treated with increasing concentra-

tions of antagonists with activity against both

dopamine and serotonin receptors (19, 20).

These included metoclopramide, chlorprom-

azine, and clozapine. The cells were then

incubated with JCV at a multiplicity of

infection (MOI) of 1.0 in the continued pres-

ence of drug. At 72 hours after infection, the

cells were assayed for viral infection. The

dopamine-specific antagonists, bromocriptine

and minaprine, and the dopamine agonist,

pergolide, had little to no effect on the infec-

tivity of glial cells by JCV (Fig. 1B). In con-

trast, metoclopramide, chlorpromazine, and

clozapine, which antagonize the 5HT2 sero-

tonergic receptors, all significantly inhibited

infection (Fig. 1B). Because these reagents are

not highly specific, we next asked whether

5HT itself or selective 5HT2 receptor antag-

onists could inhibit JCV infection. Glial cells

were treated in triplicate with increasing

concentrations of 5HT (which down-regulates

serotonin receptors), MDL100.907 (which se-

lectively inhibits 5HT
2A

R), SB206553 (which

inhibits 5HT
2C

R), ketanserin (which inhibits

5HT
2A

R and 5HT
2C

R), or ritanserin (which

inhibits 5HT
2A

R, 5HT
2B

R, and 5HT
2C

R)

(21–25). 5HT and MDL100.907 both inhib-

ited infection of glial cells by JCV at con-

centrations of 1.0 mM (Fig. 1B). The 5HT
2C

inhibitor SB206553 only slightly inhibited

infection when used at 1.0 mM (Fig. 1B).

The 5HT
2A

and 5HT
2C

inhibitor ketanserin

inhibited infection at 0.1 mM, and ritanserin

also inhibited at 0.1 mM (Fig. 1B).

We next asked whether antibodies direct-

ed at 5HT
2A

R, 5HT
2C

R, or at the D1, D2,

and D3 dopamine receptors could block in-

Fig. 1. (A) Glial cells express receptors for both serotonin and dopamine. Glial cells were incubated
with irrelevant antibody (solid histograms), with monoclonal antibodies to the 5HT2A and 5HT2C
serotonergic receptors (top panels, open histograms), or with polyoclonal antibodies to the D1, D2,
D2s, and D3 dopamine receptors (middle and bottom panels, open histograms). Antibody binding
was detected with either goat anti-mouse or goat anti-rabbit secondary antibodies conjugated to
AlexaFluor-488. (B) SDIs inhibited infection of glial cells by JCV. Glial cells were incubated with the
dopamine antagonists bromocriptine and minaprine, a dopamine agonist, pergolide, or with
metoclopramide, chlorpromazine, or clozapine, which antagonize both dopamine receptors and
serotonin receptors. Cells were then challenged with JCV and infection scored at 72 hours after
infection by indirect immunofluorescence assay of V antigen–expressing cells. The percentage of
infected cells in untreated cultures was set at 100%. The ability of these agents to inhibit JCV
infection correlate with their ability to antagonize 5HT2A and 5HT2c serotonin receptors. (Bottom
panel) 5HT and specific 5HT2 antagonists inhibited infection of glial cells by JCV. Glial cells were
incubated with 5HT, MDL100.907, SB206553, ketanserin, or ritanserin. Cells were challenged and
scored for viral infection as described above. 5HT, MDL100.907, ketanserin, and ritanserin all
significantly inhibited infection. SB206553 had a modest inhibitory effect on JCV infection.

Fig. 2. (A) Antibodies directed at
5HT2AR or 5HT2C R, but not
antibodies directed at dopamine
receptors, inhibit JCV infection
of glial cells. Glial cells were in-
cubated with antibodies against
either serotonin receptors or
dopamine receptors as indicated.
The cells were then challenged
with JCV and infection scored at
72 hours after infection by indi-
rect immunofluorescence analy-
sis of V antigen–expressing cells.
The percentage of infected cells
in untreated cultures was set at
100%. If antibodies to 5HT2AR
or 5HT2C R were added at 24
hours after infection, they had
no effect on virus infection. (B)
Antibodies directed at 5HT2AR
or 5HT2C R do not inhibit infec-
tion of glial cells by SV40, as
indicated.
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fection. Glial cells were pre-incubated with

equivalent amounts of each antibody and

then challenged with JCV. None of the anti-

bodies to dopamine receptors specifically

inhibited infection of glial cells by JCV

(Fig. 2A). In contrast, the antibodies to both

5HT
2A

R and 5HT
2C

R significantly in-

hibited infection (Fig. 2A). These antibodies

had no effect on infection if added 24 hours

after infection (Fig. 2A). As a control for

specificity, we pre-incubated glial cells

with antibodies to 5HT
2A

R or 5HT
2C

R

and then challenged with the related virus,

SV40. These antibodies had no significant

effect on infection of glial cells by SV40

(Fig. 2B).

We next asked if we could rescue

infection in 5HT
2A

receptor–negative cells

by transient and/or stable expression of a

5HT
2A

receptor clone. HeLa cells did not

express either 5HT
2A

or 5HT
2C

receptors but

expressed abundant levels of D1, D2, D2s,

and D3 dopamine receptors (Fig. 3A). We

transiently transfected HeLa cells with

p5HT
2A

R or a control vector, and at 24

hours after transfection the cells were in-

fected with JCV at an MOI of 10.0. Infection

was assayed 48 hours after infection. HeLa

cells transfected with the control construct

(mock) remained refractory to JCV infection

(Fig. 3B). In contrast, HeLa cells transfected

with the 5HT
2A

receptor clone became sus-

ceptible to infection (Fig. 3B). The percent-

age of infected cells was low (5%) but

consistent with the low transfection efficien-

cy of HeLa cells. We next established a

HeLa cell line stably expressing the 5HT
2A

receptor by cotransfection of p5HT
2A

R with

a plasmid encoding resistance to puromycin

(pMSCVpuro) (Fig. 3C). HeLa-5HT
2A

R

cells were then challenged with JCV in the

presence and absence of antibodies to

5HT
2A

R. The HeLa-5HT
2A

R cells were

readily infected by JCV at levels comparable

to infection in SVG-A glial cells (Fig. 3C).

Infection of both cell types by JCV was

blocked by antibody to 5HT
2A

R (Fig. 3C).

Glial cells were transfected with a GFP-

tagged 5HT
2A

receptor clone and then

incubated with Alexa-fluor 594–labeled

JCV at 24 hours after transfection when

GFP expression was maximal (26). Virus

binding was first synchronized by incubation

with the cells at 4-C for 30 min. The cells

were then either fixed immediately or

warmed to 37-C for 5 min or 30 min and

then fixed. When the cells were allowed to

internalize virus at 37-C for 5 min or 30 min,

strong colocalization between the virus and

the 5HT
2A

receptors was seen (Fig. 4). The

virus appeared to initially interact only with

the alpha 2-6–linked sialic acid component

of the JCV receptor, and then at 37-C
interacted with the 5HT

2A
receptor. This

second interaction most likely leads to

efficient and rapid virus internalization. This

is not unexpected, because both JCV and

5HT
2A

receptors are rapidly internalized by

clathrin-dependent endocytosis after ligand

binding. This is also consistent with the fact

that JCV internalization is accompanied by

activation of the MAP kinases ERKs1 and 2,

because serotonin binding to 5HT
2A

recep-

tors also activates ERKs 1 and 2 (12, 27, 28).

Compared with other polyomaviruses,

JCV has a very restricted tropism, infecting

Fig. 3. (A) HeLa cells express dopamine
receptors but do not express 5HT2A or
5HT2c serotonergic receptors. HeLa cells
were incubated with irrelevant antibody
(solid histograms), with monoclonal anti-
bodies to the 5HT2AR and 5HT2C R (top
panels, open histograms), or with poly-
clonal antibodies to the D1, D2, D2s, and
D3 dopamine receptors (middle and bot-
tom panels, open histograms). Antibody
binding was detected with either goat
anti-mouse or goat anti-rabbit secondary
antibodies conjugated to AlexaFluor-488.
(B) Transient transfection of HeLa cells
with the 5HT2A receptor rescues virus
infection. HeLa cells were untreated,
transfected with irrelevant plasmid DNA
(mock), or with a 5HT2A receptor–expressing
plasmid. At 24 hours after transfection,
the cells were challenged with JCV and
infection scored 48 hours later by indirect
immunofluorescent analysis of T antigen–
expressing cells. The cells were counter-
stained with Evans blue, which fluoresces
red in the ultraviolet channel. T antigen–
expressing cells could only be detected in
HeLa cells transfected with the 5HT2A
receptor clone. The percentage of T
antigen–positive cells is indicated in pa-
rentheses. (C) Stable transfection of HeLa cells with the 5HT2A receptor
rescues virus infection. (Top panel) Analysis of 5HT2AR expression on
HeLa cells stably expressing 5HT2AR (HeLa-5HT2AR). (Middle panel)
HeLa-5HT2AR cells infected with JCV and stained for T antigen. The
percentage of infected cells is indicated in parentheses. (Bottom panel)

Infection of SVG-A and HeLa-5HT2AR cells by JCV is blocked by
antibodies to 5HT2AR. The percentage of infected SVG-A and HeLa-
5HT2AR cells in nonspecific antibody–treated controls is indicated in
parentheses. The amount of infection in the control samples was set at
100% for comparison.

Fig. 4. Colocalization of JCV and
5HT2A receptor at different
stages of virus internalization.
(A) Glial cells were transiently
transfected with a 5HT2AR-GFP
serotonin receptor construct, and
the fusion protein was visualized
by confocal microscopy. (B and
C) 5HT2AR-GFP–expressing cells
were exposed to AlexaFluor-
594–labeled JCV (red) and al-
lowed to internalize for 5 min
(B) or 30 min (C). At both time points, virus is shown to colocalize with the 5HT2A-GFP receptor
(yellow). Insets show an enlarged portion of the image identified by arrows. Scale bar, 10 m.
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oligodendrocytes, astrocytes, kidney epithe-

lial cells, and, to a limited extent, B lym-

phocytes. In vitro, the virus can only be

efficiently propagated in primary human fetal

glial cells or in human fetal glial cell lines

such as POJ and SVG (29–31). This restricted

tropism is due to the presence or absence of

cell-type-specific transcription and replication

factors and to the presence of specific virus

receptors. HeLa cells are completely refracto-

ry to infection by JCV but will support early

viral gene expression when transfected with

JCV DNA. HeLa cells express the JCV

receptor–type sialic acid (a 2-6 SA) and bind

virus as well as permissive glial cells,

suggesting that sialic acid is not sufficient

for mediating virus infection (32). Our ability

to rescue JCV infection in receptor-negative

HeLa cells by transiently or stably introducing

the 5HT
2A

receptor demonstrates that

5HT
2A

R is a functional entry receptor for

JCV. The breadth of other serotonergic

receptors that might also function as JCV

receptors has not been thoroughly investigat-

ed, but preliminary data have ruled out the

5HT1, 5HT3, and 5HT7 families.

Neurons express abundant levels of sero-

tonin receptors but are generally refractory

to infection by JCV. However, neurons do

not express the receptor-type sialic acid for

JCV, which indicates that infection of cells

requires both components of the JCV recep-

tor (9). Oligodendrocytes, astrocytes, B

lymphocytes, and kidney epithelial cells all

express both the alpha 2-6–linked sialic acid

component of the JCV receptor and 5HT
2A

receptors (9, 33–39).

5HT2-family receptors are highly ex-

pressed on brain microvasculature, on as-

trocytes at the blood-brain barrier, and in

brain regions lacking the blood-brain barrier,

such as the area postrema and the choroid

plexus. This raises the possibility that JCV

may directly traffic to the CNS via the blood

under viremic conditions, as occurs during

severe and prolonged immunosuppression.

Finally, serotonin receptor agonists and

antagonists are widely used to treat a

variety of neurological and psychiatric

disorders. Drugs that have been developed

to treat PML have all been hampered by

poor bioavailability in the CNS, a problem

not inherent to serotonergic inhibitors.

Prophylactic treatment of HIV-infected

patients with serotonergic antagonists may

prevent the spread of JCV to the CNS and

the development of PML. Aggressive

therapeutic treatment of patients with

PML may reduce viral spread within the

CNS and prevent additional episodes of

demyelination.

References and Notes
1. R. C. Holman, T. J. Torok, E. D. Belay, R. S. Janssen,

L. B. Schonberger, Neuroepidemiology 17, 303 (1998).
2. D. L. Walker, R. J. Frisque, in The Papovaviridae,

N. P. Salzman, ed. (Plenum, New York and London,
1986), pp. 327–377.

3. S. Bofill-Mas, S. Pina, R. Girones, Appl. Environ.
Microbiol. 66, 238 (2000).

4. J. R. Berger, E. O. Major, Semin. Neurol. 19, 193 (1999).
5. S. A. Houff et al., N. Engl. J. Med. 318, 301 (1988).
6. M. G. C. Monaco, W. J. Atwood, M. Gravell, C. S.

Tornatore, E. O. Major, J. Virol. 70, 7004 (1996).
7. M. C. Monaco, P. N. Jensen, J. Hou, L. C. Durham,

E. O. Major, J. Virol. 72, 9918 (1998).
8. C. K. Liu, G. Wei, W. J. Atwood, J. Virol. 72, 4643 (1998).
9. S. Eash et al., Am. J. Pathol. 164, 419 (2004).

10. B. J. Chen, W. J. Atwood, Virology 300, 282 (2002).
11. M. T. Pho, A. Ashok, W. J. Atwood, J. Virol. 74, 2288

(2000).
12. W. Querbes, A. Benmerah, D. Tosoni, P. P. Di Fiore,

W. J. Atwood, J. Virol. 78, 250 (2004).
13. L. Pelkmans, J. Kartenbeck, A. Helenius, Nature Cell

Biol. 3, 473 (2001).
14. L. C. Norkin, Immunol. Rev. 168, 13 (1999).
15. L. C. Norkin, H. A. Anderson, S. A. Wolfrom, A.

Oppenheim, J. Virol. 76, 5156 (2002).
16. S. Baum et al., J. Neurovirol. 9, 32 (2003).
17. A. Newman-Tancredi et al., J. Pharmacol. Exp. Ther.

303, 815 (2002).
18. M. Velasco, A. Luchsinger, Am. J. Ther. 5, 37 (1998).
19. K. Herrick-Davis, E. Grinde, M. Teitler, J. Pharmacol.

Exp. Ther. 295, 226 (2000).
20. P. K. Gillman, J. Psychopharmacol. 13, 100 (1999).
21. F. G. Boess, I. L. Martin, Neuropharmacology 33, 275

(1994).
22. M. S. Choudhary, S. Craigo, B. L. Roth, Mol. Pharmacol.

42, 627 (1992).
23. M. Dudley, A. Ogden, A. Carr, T. Nieduzak, J. Kehne,

Soc. Neurosci. Abstr. 16, 1037 (1990).
24. J. L. Herndon, A. Ismaiel, S. P. Ingher, M. Teitler,

R. A. Glennon, J. Med. Chem. 35, 4903 (1992).
25. K. Kristiansen, S. G. Dahl, Eur. J. Pharmacol. 306, 195

(1996).
26. A. Bhatnagar et al., J. Biol. Chem. 276, 8269 (2001).
27. D. Hoyer et al., Pharmacol. Rev. 46, 157 (1994).
28. A. Bhatnagar, D. J. Sheffler, W. K. Kroeze, B.

Compton-Toth, B. L. Roth, J. Biol. Chem. 279, 34614
(2004).

29. C. Mandl, D. L. Walker, R. J. Frisque, J. Virol. 61, 755
(1987).

30. B. Padgett, G. ZuRhein, D. Walker, R. Echroade,
B. Dessel, Lancet I, 1257 (1971).

31. E. O. Major et al., Proc. Natl. Acad. Sci. U.S.A. 82,
1257 (1985).

32. G. Wei, C. K. Liu, W. J. Atwood, J. Neurovirol. 6, 127
(2000).

33. A. Merzak, S. Koochekpour, M. P. Fillion, G. Fillion,
G. J. Pilkington, Brain Res. Mol. Brain Res. 41, 1 (1996).

34. Z. Cohen et al., J. Cereb. Blood Flow Metab. 19, 908
(1999).

35. M. I. Fonseca, Y. G. Ni, D. D. Dunning, R. Miledi, Brain
Res. Mol. Brain Res. 89, 11 (2001).

36. S. Belachew et al., Neuroreport 9, 973 (1998).
37. J. A. Gray et al., Mol. Pharmacol. 60, 1020 (2001).
38. D. W. Bonhaus et al., Br. J. Pharmacol. 115, 622 (1995).
39. M. Chang, L. Zhang, J. P. Tam, E. Sanders-Bush, J. Biol.

Chem. 275, 7021 (2000).
40. We would like to thank all members of the Atwood

laboratory for critical discussion during the course of
this work. We thank J. Sedivy for critical discussions
during the preparation of the manuscript. We also
thank L. Brossay for the pMSCV plasmid, R. Creton
for critical help with confocal microscopy, and A.
Robinson, A. Bozek, and L. St. Pierre for administra-
tive assistance. Work in our laboratory was sup-
ported by a grant from the National Cancer Institute,
R01 CA71878, and by a grant from the National
Institute of Neurological Disorders and Stroke, R01
NS43097. W.Q. is supported by a Graduate Assist-
antship in Areas of National Need training grant
from the Department of Education, P200A030100.
Work in the Roth lab was supported by
RO1MH57635, RO1MH61887, and the National
Institute of Mental Health Psychoactive Drug Screen-
ing Program to B.L.R.

Supporting Online Material
www.sciencemag.org/cgi/content/full/306/5700/1380/
DC1
Materials and Methods

2 August 2004; accepted 21 September 2004

Fat Mobilization in Adipose Tissue
Is Promoted by Adipose

Triglyceride Lipase
Robert Zimmermann,1* Juliane G. Strauss,1*
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Mobilization of fatty acids from triglyceride stores in adipose tissue requires
lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may
contribute to the pathogenesis of obesity and insulin resistance. Until now,
hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze
triglycerides in mammalian adipose tissue. Here, we report that a second
enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in
triglyceride hydrolysis. It is interesting that ATGL contains a ‘‘patatin domain’’
common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of
mice and humans. It exhibits high substrate specificity for triacylglycerol and is
associated with lipid droplets. Inhibition of ATGL markedly decreases total
adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize
stored triglycerides in adipose tissue of mammals.

Animals, seed plants, and fungi commonly

store excessive amounts of energy sub-

strates in the form of intracellular triglyc-

eride (TG) deposits. In mammals, TGs are

stored in adipose tissue, where they provide

the primary source of energy during peri-
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