19 research outputs found

    Organophosphorus Pesticide Exposure at 17 Weeks’ Gestation and Odds of Offspring Attention-Deficit/Hyperactivity Disorder Diagnosis in the Norwegian Mother, Father, and Child Cohort Study

    Get PDF
    Prenatal organophosphorus pesticides (OPs) are ubiquitous and have been linked to adverse neurodevelopmental outcomes. However, few studies have examined prenatal OPs in relation to diagnosed attention-deficit/hyperactivity disorder (ADHD), with only two studies exploring this relationship in a population primarily exposed through diet. In this study, we used a nested case-control study to evaluate prenatal OP exposure and ADHD diagnosis in the Norwegian Mother, Father, and Child Cohort Study (MoBa). For births that occurred between 2003 and 2008, ADHD diagnoses were obtained from linkage of MoBa participants with the Norwegian Patient Registry (N = 297), and a reference population was randomly selected from the eligible population (N = 552). Maternal urine samples were collected at 17 weeks’ gestation and molar sums of diethyl phosphates (ΣDEP) and dimethyl phosphates metabolites (ΣDMP) were calculated. Multivariable adjusted logistic regression models were used to estimate the association between prenatal OP metabolite exposure and child ADHD diagnosis. Additionally, multiplicative effect measure modification (EMM) by child sex was assessed. In most cases, mothers in the second and third tertiles of ΣDMP and ΣDEP exposure had slightly lower odds of having a child with ADHD, although confidence intervals were wide and included the null. EMM by child sex was not observed for either ΣDMP or ΣDEP. In summary, we did not find evidence that OPs at 17 weeks’ gestation increased the odds of ADHD in this nested case-control study of ADHD in MoBa, a population primarily experiencing dietary exposure

    Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study

    Get PDF
    Prenatal organophosphorus pesticide (OPP) exposure has been associated with child attention-deficit/hyperactivity disorder (ADHD) in agricultural communities and those that are exposed to residentially applied insecticides. To examine this association in populations that are exposed primarily through diet, we estimate the associations between prenatal OPP exposure and preschool ADHD in the Norwegian Mother, Father and Child Cohort Study (MoBa), and describe modification by paraoxonase 1 (PON1) gene variants. We used participants from the MoBa Preschool ADHD Sub-study (n = 259 cases) and a random sample of MoBa sub-cohort participants (n = 547) with birth years from 2004 to 2008. Prenatal urinary dialkylphosphate (DAP) metabolites (total diethylphosphate [∑DEP] and total dimethylphosphate [∑DMP]) were measured by an ultra-performance liquid chromatography-time-of-flight system and summed by molar concentration. Maternal DNA was genotyped for coding variants of PON1 (Q192R and L55M). We used a multivariable logistic regression to calculate the odds ratios (OR) and 95% confidence intervals, adjusted for maternal education, parity, income dependency, age, marital status, ADHD-like symptoms, pesticide use, produce consumption, and season. We found no associations between DAP metabolite concentrations and preschool ADHD. The adjusted ORs for exposure quartiles 2–4 relative to 1 were slightly inverse. No monotonic trends were observed, and the estimates lacked precision, likely due to the small sample size and variation in the population. We found no evidence of modification by PON1 SNP variation or child sex. Maternal urinary DAP concentrations were not associated with preschool ADHD

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≄18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Prenatal Exposure to Organophosphorus Pesticides and Preschool ADHD in the Norwegian Mother, Father and Child Cohort Study

    Get PDF
    Prenatal organophosphorus pesticide (OPP) exposure has been associated with child attention-deficit/hyperactivity disorder (ADHD) in agricultural communities and those that are exposed to residentially applied insecticides. To examine this association in populations that are exposed primarily through diet, we estimate the associations between prenatal OPP exposure and preschool ADHD in the Norwegian Mother, Father and Child Cohort Study (MoBa), and describe modification by paraoxonase 1 (PON1) gene variants. We used participants from the MoBa Preschool ADHD Sub-study (n = 259 cases) and a random sample of MoBa sub-cohort participants (n = 547) with birth years from 2004 to 2008. Prenatal urinary dialkylphosphate (DAP) metabolites (total diethylphosphate [∑DEP] and total dimethylphosphate [∑DMP]) were measured by an ultra-performance liquid chromatography-time-of-flight system and summed by molar concentration. Maternal DNA was genotyped for coding variants of PON1 (Q192R and L55M). We used a multivariable logistic regression to calculate the odds ratios (OR) and 95% confidence intervals, adjusted for maternal education, parity, income dependency, age, marital status, ADHD-like symptoms, pesticide use, produce consumption, and season. We found no associations between DAP metabolite concentrations and preschool ADHD. The adjusted ORs for exposure quartiles 2–4 relative to 1 were slightly inverse. No monotonic trends were observed, and the estimates lacked precision, likely due to the small sample size and variation in the population. We found no evidence of modification by PON1 SNP variation or child sex. Maternal urinary DAP concentrations were not associated with preschool ADHD

    Empowering Data Sharing and Analytics through the Open Data Commons for Traumatic Brain Injury Research.

    No full text
    Traumatic brain injury (TBI) is a major public health problem. Despite considerable research deciphering injury pathophysiology, precision therapies remain elusive. Here, we present large-scale data sharing and machine intelligence approaches to leverage TBI complexity. The Open Data Commons for TBI (ODC-TBI) is a community-centered repository emphasizing Findable, Accessible, Interoperable, and Reusable data sharing and publication with persistent identifiers. Importantly, the ODC-TBI implements data sharing of individual subject data, enabling pooling for high-sample-size, feature-rich data sets for machine learning analytics. We demonstrate pooled ODC-TBI data analyses, starting with descriptive analytics of subject-level data from 11 previously published articles (N = 1250 subjects) representing six distinct pre-clinical TBI models. Second, we perform unsupervised machine learning on multi-cohort data to identify persistent inflammatory patterns across different studies, improving experimental sensitivity for pro- versus anti-inflammation effects. As funders and journals increasingly mandate open data practices, ODC-TBI will create new scientific opportunities for researchers and facilitate multi-data-set, multi-dimensional analytics toward effective translation
    corecore