34 research outputs found

    Unprecedented climate events: Historical changes, aspirational targets, and national commitments

    Get PDF
    The United Nations Paris Agreement creates a specific need to compare consequences of cumulative emissions for pledged national commitments and aspirational targets of 1.5° to 2°C global warming. We find that humans have already increased the probability of historically unprecedented hot, warm, wet, and dry extremes, including over 50 to 90% of North America, Europe, and East Asia. Emissions consistent with national commitments are likely to cause substantial and widespread additional increases, including more than fivefold for warmest night over ~50% of Europe and >25% of East Asia and more than threefold for wettest days over >35% of North America, Europe, and East Asia. In contrast, meeting aspirational targets to keep global warming below 2°C reduces the area experiencing more than threefold increases to 90% of North America, Europe, East Asia, and much of the tropics—still exhibit sizable increases in the probability of record-setting hot, wet, and/or dry events

    Revisiting the Leading Drivers of Pacific Coastal Drought Variability in the Contiguous United States

    Get PDF
    Coastal droughts that simultaneously affect California, Oregon, and Washington are rare, but they have extensive and severe impacts (e.g., wildfire and agriculture). To better understand these events, historical observations are used to investigate 1) drought variability along the Pacific coast of the contiguous United States and 2) years when extreme drought affects the entire coast. The leading pattern of cold-season (October–March) precipitation variability along the Pacific coast favors spatially coherent moisture anomalies, accounting for >40% of the underlying variance, and is forced primarily by internal atmospheric dynamics. This contrasts with a much weaker dipole mode (~20% of precipitation variability) characterized by antiphased moisture anomalies across 40°N and strong correlations with tropical Pacific sea surface temperatures (SSTs). Sixteen coastal-wide summer droughts occurred from 1895 to 2016 (clustering in the 1920s–1930s and post-2000), events most strongly linked with the leading precipitation mode and internal atmospheric variability. The frequency of landfalling atmospheric rivers south of 40°N is sharply reduced during coastal droughts but not north of this boundary, where their frequency is more strongly influenced by the dipole. The lack of a consistent pattern of SST forcing during coastal droughts suggests little potential for skillful seasonal predictions. However, their tendency to cluster in time and the impact of warming during recent droughts may help inform decadal and longer-term drought risks

    The Curious Case of Projected Twenty-First-Century Drying but Greening in the American West

    Get PDF
    Climate models project significant twenty-first-century declines in water availability over the American West from anthropogenic warming. However, the physical mechanisms underpinning this response are poorly characterized, as are the uncertainties from vegetation’s modulation of evaporative losses. To understand the drivers and uncertainties of future hydroclimate in the American West, a 35-member single model ensemble is used to examine the response of summer soil moisture and runoff to anthropogenic forcing. Widespread dry season soil moisture declines occur across the region despite increases in total water-year precipitation and ubiquitous increases in plant water-use efficiency. These modeled soil moisture declines are initially forced by significant snowpack losses that directly diminish summer soil water, even in regions where water-year precipitation increases. When snowpack priming is coupled with a warming- and CO2-induced shift in phenology and increased primary production, widespread increases in leaf area further reduces summer soil moisture and runoff by outpacing decreased stomatal conductance from high CO2. The net effects lead to the co-occurrence of both a “greener” and “drier” future across the western United States. Because simulated vegetation exerts a large influence on predicted changes in water availability in the American West, these findings highlight the importance of reducing the substantial uncertainties in the ecological processes increasingly incorporated into numerical Earth system models

    The 2016 Southeastern U.S. Drought: An Extreme Departure From Centennial Wetting and Cooling

    Get PDF
    The fall 2016 drought in the southeastern United States (SE U.S.) appeared exceptional based on its widespread impacts, but the current monitoring framework that only extends from 1979 to present does not readily facilitate evaluation of soil-moisture anomalies in a centennial context. A new method to extend monthly gridded soil-moisture estimates back to 1895 is developed, indicating that since 1895, October–November 2016 soil moisture (0–200 cm) in the SE U.S. was likely the second lowest on record, behind 1954. This severe drought developed rapidly and was brought on by low September–November precipitation and record-high September–November daily maximum temperatures (Tmax). Record-high Tmax drove record-high atmospheric moisture demand, accounting for 28% of the October–November 2016 soil-moisture anomaly. Drought and heat in fall 2016 contrasted with 20th century wetting and cooling in the region but resembled conditions more common from 1895–1956. Dynamically, the exceptional drying in fall 2016 was driven by anomalous ridging over the central United States that reduced south-southwesterly moisture transports into the SE U.S. by approximately 75%. These circulation anomalies were partly promoted by a moderate La Niña and warmth in the tropical Atlantic, but these processes accounted for very little of the SE U.S. drying in fall 2016, implying a large role for internal atmospheric variability. The extended analysis back to 1895 indicates that SE U.S. droughts as strong as the 2016 event are more likely than indicated from a shorter 60 year perspective and continued multidecadal swings in precipitation may combine with future warming to further enhance the likelihood of such events
    corecore