84 research outputs found
Pharmacokinetic models for propofol-defining and illuminating the devil in the detail
The recently introduced open-target-controlled infusion (TCI) systems can be programmed with any pharmacokinetic model, and allow either plasma- or effect-site targeting. With effect-site targeting the goal is to achieve a user-defined target effect-site concentration as rapidly as possible, by manipulating the plasma concentration around the target. Currently systems are pre-programmed with the Marsh and Schnider pharmacokinetic models for propofol. The former is an adapted version of the Gepts model, in which the rate constants are fixed, whereas compartment volumes and clearances are weight proportional. The Schnider model was developed during combined pharmacokinetic-pharmacodynamic modelling studies. It has fixed values for V1, V3, k(13), and k(31), adjusts V2, k(12), and k(21) for age, and adjusts k(10) according to total weight, lean body mass (LBM), and height. In plasma targeting mode, the small, fixed V1 results in very small initial doses on starting the system or on increasing the target concentration in comparison with the Marsh model. The Schnider model should thus always be used in effect-site targeting mode, in which larger initial doses are administered, albeit still smaller than for the Marsh model. Users of the Schnider model should be aware that in the morbidly obese the LBM equation can generate paradoxical values resulting in excessive increases in maintenance infusion rates. Finally, the two currently available open TCI systems implement different methods of effect-site targeting for the Schnider model, and in a small subset of patients the induction doses generated by the two methods can differ significantly
The metabolism and de-bromination of bromotyrosine in vivo
During inflammation, leukocyte-derived eosinophil peroxidase catalyses the formation of hypobromous acid, which can brominate tyrosine residues in proteins to form bromotyrosine. Since eosinophils are involved in the pathogenesis of allergic reactions, such as asthma, urinary bromotyrosine level has been used for the assessment of children with asthma. However, little is known about the metabolism and disposition of bromotyrosine in vivo. The aim of this study was to identify the major urinary metabolites formed during bromotyrosine metabolism and to develop mass spectrometric methods for their quantitation. Deuterium-labeled bromotyrosine was synthesized by deuterium exchange. [D3]bromotyrosine (500 nmole) was injected intraperitoneally into Sprague-Dawley rats and urine was collected for 24 h in a metabolic cage. 13C-labeled derivatives of bromotyrosine and its major urinary metabolite were synthesized and used as internal standards for quantitation. Following solid phase extraction, urine samples were derivatized to the pentafluorobenzyl ester, and analyzed using isotope dilution gas chromatography and negative-ion chemical ionization mass spectrometry. A novel brominated metabolite, 3-bromo-4-hydroxyphenylacetic acid (bromo-HPA), was identified as the major brominated metabolite of bromotyrosine. Bromo-HPA only accounted for 0.43±0.04% of infused [D3]bromotyrosine and 0.12±0.02% of infused [D3]bromotyrosine was excreted in the urine unchanged. However, ~1.3% (6.66±1.33 nmole) of infused [D3]bromotyrosine was excreted in the urine as the de-brominated metabolite, [D3]4-hydroxyphenylacetic acid, which is also a urinary metabolite of tyrosine in mammals. We also tested whether or not iodotyrosine dehalogenase can catalyse de-bromination of bromotyrosine and showed that iodotyrosine dehalogenase is able to de-brominate free bromotyrosine in vitro. We identified bromo-HPA as the main brominated urinary metabolite of bromotyrosine in rats. However, de-halogenation of bromotyrosine is the major metabolic pathway to eliminate free brominated tyrosine in vivo
The non-syndromic familial thoracic aortic aneurysms and dissections maps to 15q21 locus
Background: Thoracic aortic aneurysms and dissections (TAAD) is a critical condition that often goes undiagnosed with fatal consequences. While majority of the cases are sporadic, more than 20 are inherited as a single gene disorder. The most common familial TAA is Marfan syndrome (MFS), which is primarily caused by mutations in fibrillin-1 (FBN1) gene. Patients with FBN1 mutations are at higher risk for dissection compared to other patients with similar size aneurysms. Methods: Fifteen family members were genotyped using Affymetrix-10K genechips. A genome-wide association study was carried out using an autosomal dominant model of inheritance with incomplete penetrance. Mutation screening of all exons and exon-intron boundaries of FBN1 gene which reside near the peak Lod score was carried out by direct sequencing.Results: The index case presented with agonizing substernal pain and was found to have TAAD by transthoracic echocardiogram. The family history was significant for 3 first degree relatives with TAA. Nine additional family members were diagnosed with TAA by echocardiography examinations. The affected individuals had no syndromic features. A genome-wide analysis of linkage mapped the disease gene to a single locus on chromosome 15q21 with a peak Lod score of 3.6 at fibrillin-1 (FBN1) gene locus (odds ratio > 4000:1 in favour of linkage), strongly suggesting that FBN1 is the causative gene. No mutation was identified within the exons and exon-intron boundaries of FBN1 gene that segregated with the disease. Haplotype analysis identified additional mutation carriers who had previously unknown status due to borderline dilation of the ascending aorta.Conclusions: A familial non-syndromic TAAD is strongly associated with the FBN1 gene locus and has a malignant disease course often seen in MFS patients. This finding indicates the importance of obtaining detailed family history and echocardiographic screening of extended relatives of patients with non-syndromic TAAD to improve the outcome. In addition, association of non-syndromic TAAD with the Marfan disease gene locus poses the question whether secondary prevention strategies employed for Marfan syndrome patients should be applied to all patients with familial TAAD. © 2010 Keramati et al; licensee BioMed Central Ltd
Role of the nitric oxide pathway and the endocannabinoid system in neurogenic relaxation of corpus cavernosum from biliary cirrhotic rats
Background and purpose: Relaxation of corpus cavernosum, which is mediated by nitric oxide (NO) released from non-adrenergic non-cholinergic (NANC) neurotransmission, is critical for inducing penile erection and can be affected by many pathophysiological conditions. However, the peripheral effect of liver cirrhosis on erectile function is as yet unknown. The aim of the present study was to investigate the effect of biliary cirrhosis on NANC-mediated relaxation of rat corpus cavernosum and the possible roles of endocannabinoid and nitric oxide systems in this model. Experimental approach: Cirrhosis was induced by bile duct ligation. Controls underwent sham operation. Four weeks later, strips of corpus cavernosum were mounted in a standard organ bath and NANC-mediated relaxations were obtained by applying electrical field stimulation. Key results: The NANC-mediated relaxation was enhanced in corporal strips from cirrhotic animals. Anandamide potentiated the relaxations in both groups. Either AM251 (CB 1 antagonist) or capsazepine (vanilloid VR 1 antagonist), but not AM630 (CB 2 antagonist), prevented the enhanced relaxations of cirrhotic strips. Either the non-selective NOS inhibitor L-NAME or the selective neuronal NOS inhibitor L-NPA inhibited relaxations in both groups, but cirrhotic groups were more resistant to the inhibitory effects of these agents. Relaxations to sodium nitroprusside (NO donor) were similar in tissues from the two groups. Conclusions and implications: Cirrhosis potentiates the neurogenic relaxation of rat corpus cavernosum probably via the NO pathway and involving cannabinoid CB 1 and vanilloid VR 1 receptors. © 2007 Nature Publishing Group All rights reserved
Early sac shrinkage predicts a low risk of late complications after endovascular aortic aneurysm repair
Background Aneurysm shrinkage has been proposed as a marker of successful endovascular aneurysm repair (EVAR). Patients with early postoperative shrinkage may experience fewer subsequent complications, and consequently require less intensive surveillance. Methods Patients undergoing EVAR from 2000 to 2011 at three vascular centres (in 2 countries), who had two imaging examinations (postoperative and after 6-18 months), were included. Maximum diameter, complications and secondary interventions during follow-up were registered. Patients were categorized according to early sac dynamics. The primary endpoint was freedom from late complications. Secondary endpoints were freedom from secondary intervention, postimplant rupture and direct (type I/III) endoleaks. Results Some 597 EVARs (71·1 per cent of all EVARs) were included. No shrinkage was observed in 284 patients (47·6 per cent), moderate shrinkage (5-9 mm) in 142 (23·8 per cent) and major shrinkage (at least 10 mm) in 171 patients (28·6 per cent). Four years after the index imaging, the rate of freedom from complications was 84·3 (95 per cent confidence interval 78·7 to 89·8), 88·1 (80·6 to 95·5) and 94·4 (90·1 to 98·7) per cent respectively. No shrinkage was an independent risk factor for late complications compared with major shrinkage (hazard ratio (HR) 3·11; P < 0·001). Moderate compared with major shrinkage (HR 2·10; P = 0·022), early postoperative complications (HR 3·34; P < 0·001) and increasing abdominal aortic aneurysm baseline diameter (HR 1·02; P = 0·001) were also risk factors for late complications. Freedom from secondary interventions and direct endoleaks was greater for patients with major sac shrinkage. Conclusion Early change in aneurysm sac diameter is a strong predictor of late complications after EVAR. Patients with major sac shrinkage have a very low risk of complications for up to 5 years. This parameter may be used to tailor postoperative surveillance. Towards personalized surveillanc
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Erratum: Unexplored therapeutic opportunities in the human genome (Nature reviews. Drug discovery (2018) 17 5 (317-332))
This corrects the article DOI: 10.1038/nrd.2018.14
Unexplored therapeutic opportunities in the human genome
A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved
- …