39 research outputs found
Wormnet: a crystal ball for Caenorhabditis elegans
An integrated gene network for Caenorhabditis elegans encompasses most protein-coding genes
Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions
mRNA localization is an evolutionarily widespread phenomenon that can facilitate subcellular protein targeting. Extensive work has focused on mRNA targeting through 'zip-codes' within untranslated regions (UTRs), whereas much less is known about translation-dependent cues. Here, we examine mRNA localization in Caenorhabditis elegans embryonic epithelia. From an smFISH-based survey, we identified mRNAs associated with the cell membrane or cortex, and with apical junctions in a stage- and cell type-specific manner. Mutational analyses for one of these transcripts, dlg-1/discs large, revealed that it relied on a translation-dependent process and did not require its 5' or 3' UTRs. We suggest a model in which dlg-1 transcripts are co-translationally localized with the nascent protein: first the translating complex goes to the cell membrane using sequences located at the C-terminal/3' end, and then apically using N-terminal/5' sequences. These studies identify a translation-based process for mRNA localization within developing epithelia and determine the necessary cis-acting sequences for dlg-1 mRNA targeting
Image compression software for the SOHO LASCO and EIT experiments
This paper describes the lossless and lossy image compression algorithms to be used on board the Solar Heliospheric Observatory (SOHO) in conjunction with the Large Angle Spectrometric Coronograph and Extreme Ultraviolet Imaging Telescope experiments. It also shows preliminary results obtained using similar prior imagery and discusses the lossy compression artifacts which will result. This paper is in part intended for the use of SOHO investigators who need to understand the results of SOHO compression in order to better allocate the transmission bits which they have been allocated
1D-VAR Retrieval Using Superchannels
Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data
Retrieval Lesson Learned from NAST-I Hyperspectral Data
The retrieval lesson learned is important to many current and future hyperspectral remote sensors. Validated retrieval algorithms demonstrate the advancement of hyperspectral remote sensing capabilities to be achieved with current and future satellite instruments
Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements
A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites
Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements
Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra
Thermodynamic and cloud parameter retrieval using infrared spectral data
High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL)
Probing and manipulating embryogenesis via nanoscale thermometry and temperature control
Understanding the coordination of cell division timing is one of the
outstanding questions in the field of developmental biology. One active control
parameter of the cell cycle duration is temperature, as it can accelerate or
decelerate the rate of biochemical reactions. However, controlled experiments
at the cellular-scale are challenging due to the limited availability of
biocompatible temperature sensors as well as the lack of practical methods to
systematically control local temperatures and cellular dynamics. Here, we
demonstrate a method to probe and control the cell division timing in
Caenorhabditis elegans embryos using a combination of local laser heating and
nanoscale thermometry. Local infrared laser illumination produces a temperature
gradient across the embryo, which is precisely measured by in-vivo nanoscale
thermometry using quantum defects in nanodiamonds. These techniques enable
selective, controlled acceleration of the cell divisions, even enabling an
inversion of division order at the two cell stage. Our data suggest that the
cell cycle timing asynchrony of the early embryonic development in C. elegans
is determined independently by individual cells rather than via cell-to-cell
communication. Our method can be used to control the development of
multicellular organisms and to provide insights into the regulation of cell
division timings as a consequence of local perturbations.Comment: 6+6 pages, 4+9 figure
Retrieval validation during the European Aqua Thermodynamic Experiment
Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors
aboard Earth observing satellites are critical to weather prediction and scientific research. The retrieval algorithms and
retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation
and data processing systems. The European Aqua Thermodynamic Experiment (EAQUATE) was conducted not only for
validation of the Atmospheric InfraRed Sounder on the Aqua satellite, but also for assessment of validation systems of both
ground-based and aircraft-based instruments that will be used for other satellite systems, such as the Infrared Atmospheric
Sounding Interferometer on the European MetOp satellite, the Cross-track Infrared Sounder from the National Polar-orbiting
Operational Environmental Satellite System (NPOESS) Preparatory Project and the continuing series of NPOESS satellites.
Detailed intercomparisons were conducted and presented using different retrieval methodologies: measurements from
airborne ultraspectral Fourier transform spectrometers, aircraft in situ instruments, dedicated dropsondes and radiosondes,
ground-based Raman lidar, as well as the European Centre for Medium-range Weather Forecasting modelled thermal
structures. The results of this study not only illustrate the quality of the measurements and retrieval products, but also
demonstrate the capability of the validation systems put in place to validate current and future hyperspectral sounding
instruments and their scientific products