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Abstract. High-resolution infrared radiance spectra obtained from near nac ir observations 

provide atmospheric, surface, and cloud property information. A fast radiative transfer model, 

including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The 

retrieval algorithm is presented along with its application to recent field experiment data from the 

NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy 

dependence on cloud properties is discussed. It is shown that relatively accurate temperature and 

moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, 

accurate temperature and moisture profiles down to cloud top level are obtained. For both 

optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy 

of approximately 1 .O km. Preliminary NAST-I retrieval results from the recent Atlantic- 

THORPEX Regional Campaign (ATReC) are presented and compared with coincident 

observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). 
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1. Introduction 

Observations from an aircraft, or a spacecraft, flown infrared spectrometer can be used to 

infer the atmospheric temperature, moisture, and concentration of other chemical species using 

radiative transfer equation inversion techniques. The retrievals of atmospheric state (i.e., 

temperature and moisture profiles) obtained fkom infrared radiometric measurements will contain 

intolerable error near and below the cloud level if the attenuation of infrared radiation emitted 

from the Earth’s surface and the atmosphere below the clouds are not properly accounted for in 

the retrieval process. Since there are vast cloudy regions of the globe, a great deal of effort has 

gone into the cloud detection and cloud-clearing processes [Smith et al., 20041. Nevertheless, the 

schemes dealing with cloud detection and cloud-clearing [Smith, 19681 remain a major source of 

error in the final retrieval products. Some schemes limit themselves to dealing with the 

observations unaffected by clouds [e.g., Chedin et al., 19851, while others make direct use of the 

cloudy radiances and attempt to retrieve temperature and moisture along with the cloud 

parameters [e.g., Susskind et al., 19841. Recently, fast molecular and cloud transmittance models 

have been developed to enable the infrared radiances to be used under cloudy conditions with the 

accuracy required for sounding retrieval processing. Here, the EOF (ie., empirical orthogonal 

function) statistical regression retrieval algorithm [e.g., Smith and Woolf; 1976; Zhou et al., 

20021 is expanded to include realistic cloud parameters (e.g., cloud top height, effective particle 

diameter, and optical depth) to deal with the cloudy as well as cloud-fiee observations. With this 

improved algorithm, cloud parameters, as well as atmospheric profiles, are retrieved from the 

spectral radiance observations. 

The NPOESS (National Polar-orbiting Operational Environmental Satellite System) 

Airborne Sounder Testbed (NAST) has been successfully operating on high altitude aircraft since 
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1998 [e.g., Cousins and Smith, 1997; Smith et al., 20051. NAST-I is designed to support the 

development of future satellite temperature and moisture sounders such as the IASI 

(Interferometer Atmospheric Sounding Instrument) on the METOP satellite, the CrIS (Cross- 

track Infrared Sounder) on the NPP and the follow-on NPOESS series of satellites, as well as the 

HES (Hyperspectral Environmental Sensor) to fly on the GOES-R satellite series. Both 

simulated and measured NAST-I data are used in this study. The retrieval accuracy, which 

depends on cloudiness, is discussed. Retrieval of cloud properties and atmospheric properties 

from NAST-I observations retrieval results are compared with coincident observations obtained 

from the nadir-pointing Cloud Physics Lidar (CPL) and dropsondes, respectively. 

2. Radiance simulations, training, and regression 

The infrared radiances measured under cloudy conditions are simulated by combining the 

Optimal Spectral Sampling (OSS) fast molecular radiative transfer model [Liu et al., 2003; 

Moncet et al., 20031, with the physically based cloud radiative transfer model based on DIScrete 

Ordinate Radiance Transfer (DISORT) [Stumnes et al., 19881 calculations performed for a wide 

variety of cloud microphysical properties [e.g., Yang et al., 20011. Here, a maximum of 2 cloud 

levels is used; a single cloud layer (either ice or liquid) and another optically thick cloud layer 

can be assumed to exist at a lower level when the radiosonde detects two, or more, layers of 

cloud. These cloud layers, along with the radiosonde profile, are used to simulate NAST-I 

radiances. Cirrus clouds are assumed to exist at the higher levels. The cloud microphysical 

properties are also simulated. A random number generator is used to specify cloud visible 

optical depth within a pre-specified range. Parameterization of balloon and aircraft cloud 

microphysical database [Heymsfield et al., 20031 is used to specify cloud effective particle radius 
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from the cloud optical depth. A random error of 10% is added to parameterized effective radius 

to account for real data scatter. At the lower cloud level, the opaque cloud representation (i.e., 

isothermalhaturated) is assumed and the profile is treated as isothermal below the lower cloud 

level. This lower level cloud is represented as an equivalent cloud-free isothermal temperature 

condition in the radiative transfer calculation. 

Detailed description of NAST-I retrieval methodology can be found elsewhere [e.g., 

Zhou et al., 2002; Smith et al., 20051. Here, the NAST-I EOF statistical regression methodology 

has been expanded to include cloud parameters. Regression relations are generated not only for 

predicting thermodynamic parameters, but also for predicting cloud top height and the cloud 

microphysical properties. Because the radiance is highly non-linear with respect to cloud height, 

statistics are formulated for one class of data which contains all cloud height conditions and 

seven other classes for which the cloud. height has been stratified to within approximately 1.5 km 

of the mean for that class. The classes are also separated by the cloud phase (ice and/or water). 

The final cloud height class to be used for the retrievals is obtained by iteration beginning with 

the unclassified class to predict the initial cloud height stratification for the retrievals. Usually, 

the final cloud height class is defined within five iterations of the cloud height prediction 

process. The cloud phase results from the spectral signatures observed within micro-window 

channels and the sensed cloud top temperature. However, sufficient numbers of radiosondes, 

approximately 800 soundings per each cloud height group per cloud phase, are used to ensure 

that the observations are well covered by the statistical representation. For semitransparent 

and/or scattered clouds with an effective optical depth less than one, the correct profile below the 

cloud retrieved. If a lower level cloud underlies the semitransparent and/or scattered upper level 

cloud, the lower level cloud is treated as an equivalently clear isothermal condition as described 
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for the opaque cloud condition retrieval. EOF regression enables both the cloud height and the 

cloud microphysical properties of the highest-level cloud to be estimated. 

3. Retrieval simulation with clouds 

Retrieval simulations have been performed over a set of winter hemispheric data (Cloudy 

soundings from 1 November to 10 January, from 1995 to 2003; latitude from 33"N to 54"N; 

longitude from 58"W to SSOW), which is also used for statistic training for the recent Atlantic- 

THORPEX Regional Campaign (ATReC) from 18 November to 15 December, 2003 [e.g., 

Shapiro and Thorpe, 20041. In order to evaluate the ability to retrieve profiles below thin cirrus 

clouds, the radiances are simulated with only one level cloud having an optical depth within a 

certain range. The retrievals are performed (with dependent EOF regression coefficients) using 

radiances simulated with instrument noise. Different EOF statistical regression coefficients are 

derived for the following conditions: (1) clear conditions only (denoted as CLE), (2) clear and an 

equivalently clear isothermal conditions (denoted as MIX), (3) cloudy conditions without cloud 

height grouping (denoted as CLD), and (4) cloudy conditions with cloud height grouping 

(denoted as GRP). The retrieval results are compared with the retrieval from clear radiances 

using clear sky condition regression coefficient as a reference (denoted as REF). The statistical 

analyses are performed for a set of nearly 6000 soundings. 

The cloud parameters, such as the cloud top pressure (Pc in mb), visible optical depth (z 

vis.), particle effective diameter (De in pm), and cloud phase (i.e., ice or liquid), are used in the 

cloud radiative transfer calculations. For the winter hemispheric data used here, most of the 

cirrus clouds are in the form of ice particles, so the statistical analysis with respect to the cloud 

phase is excluded for this case. The statistical results for the cloud parameter retrievals ire listed 



in Table 1 showing the retrieval accuracy improvement fi-om the general cloudy to cloud top 

height grouping retrieval. Since the effective cloud feature is present in the spectral radiances at 

the cloud top level, the cloud parameter retrieval accuracy is somewhat independent of the cloud 

optical thickness. EOF regression enables both the cloud height and the cloud microphysical 

properties of the highest-level cloud to be inferred. It is also shown in Figure 1 that the GRP 

retrieval accuracy above the clouds is somewhat independent of the cloud optical depth; and, as 

expected, the retrievals based on the MIX coefficients are better than the retrievals based on the 

CLE coefficients. However, the retrieval accuracy under the clouds is greatly improved over the 

optically thinner clouds, and the accuracy of GRP retrievals for the optical depth of less than one 

is close to that of the clear sky reference sounding retrieval accuracy. Thus, EOF regression 

enables thermodynamic properties to be inferred through thin cirrus clouds. 

4. NAST-I retrievals and inter-comparisons 

NAST-I instrumentation, measurements, calibration, and radiance validation are 

documented elsewhere [e.g., Cousins and Smith, 1997; Zhou et al., 2002; Smith et al., 20051. 

NAST-I provides relatively high spectral resolution (0.25 cm-’) measurements in the spectral 

region of 645-2700 cm-’. While a large amount of data have been collected since 1998 under a 

variety of meteorological conditions, results from only a very limited data set are presented 

herein for the purpose of “cloudy” retrieval demonstration. Retrievals fiom the recent ATReC 

are used to demonstrate this inversion methodology. These data, together with the radiosonde 

and dropsonde released fi-om the NOAA G-4 aircraft that flew below the NASA ER-2 aircraft, 

provide a unique data set for detailed analysis of retrieval resolution and accuracy. During this 

field campaign, cloud properties were also provided by the nadir-pointing Cloud Physics LIDAR 



(CPL) on board the NASA ER-2 aircraft [e.g., McGiZZ et al., 20021. All coincident observations 

obtained during this experiment are used to understand the atmospheric state and cloud 

microphysical properties for validating NAST-I retrievals. 

The experiment of 5 December 2003 is chosen to test and demonstrate this inversion 

scheme with a realistic cloud radiative transfer model. The target scenes (latitude from 32"N to 

42"N, longitude from 68"W to 76"W) covered a variety of conditions desired by the experiment 

scientific objectives. These included a variety of cloud conditions, such as medium-level 

altocumulus, as well as low-level cumulus, thunderstorms, and extensive high cirrus in the 

ATReC region covered by the ER-2 and G-4. 

Figure 2a plots NAST-I retrieved cloud top height from the nadir observations against 

CPL measured cloud top heights of the top 2 layers, and Figure 2b shows the cloud optical depth 

inferred from NAST-I measurements against that of CPL 1064 nm channel measurements. It is 

noted that NAST-I horizontal resolution (at the cloud height) of a linear resolution (at nadir) is 

13% of the distance between the aircraft altitude and the cloud height (i.e., 1.56 km when the 

cloud height is at 8 km and the ER-2 is at 20 km), while the CPL horizontal resolution is about 

0.2 km; hrtherrnore, the NAST-I vertical resolution is about 1 km while the CPL vertical 

resolution is 0.03 km. Despite the differences of the instruments and of their spatial resolutions, 

the cloud top heights inferred from NAST-I compare very well with CPL measurements for the 

variety of cloud conditions observed. The measurement sensitivity and accuracy of cloud optical 

depth inferred from the infrared measurement is expected to be much poorer than that measured 

by the CPL because of the nature of the two instruments. Even so, NAST-I cloud optical depth 

retrievals compare favorably to CPL observations. 
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NAST-I retrieved temperature and relative humidity vertical cross sections are shown in 

Figure 2c and 2d, respectively. The areas whited out are under the clouds where the cloud 

optical depth is larger than one. The variation of atmospheric conditions is captured very well by 

NAST-I retrievals, not only for the clear regions above optically thick clouds, but also for 

regions below optically thin clouds. These soundings are also validated by the dropsondes 

released from the G-4 aircraft. The dropsondes are used to reveal the retrieval sounding 

accuracy under cloud conditions. As shown in Figures 2c and 2d, retrievals of temperature and 

moisture above the clouds are not disturbed by the clouds below, and retrievals are reasonably 

accurate beneath optically thin clouds ( 6 1  .O). Inter-comparisons between each dropsonde and 

retrieval are not presented here due to the space limitation; however, the sample shown in Figure 

3 is a very representative example of all the cloudy sounding retrieval comparisons. In general, 

the retrievals show a good agreement above the clouds; the sounding comparison continues to 

show a good agreement under the (optically thin) cloud to the second layer cloud if it indicated 

by the CPL [Zhou et al., 20051. 

5. Conclusion and future work 

Clouds greatly complicate the interpretation of infrared sounding data. The new 

hyperspectral resolution infrared sounding systems alleviate much of the ambiguity between 

cloud, atmospheric temperature, and moisture contributions. However, in heavily clouded 

situations, the thermodynamic profile information to be retrieved is limited to the atmosphere 

above the clouds. The results of this study indicate some success in the ability to retrieve 

information below scattered and partially transparent cirrus clouds @e., clouds with effective 

optical depths of less than one). The thermodynamic profile information might be obtained by a 
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combination of cloud clearing and by direct retrieval from the clouded radiances using a realistic 

cloud radiative transfer model. Results achieved with airborne NAST-I observations show that 

accuracies close to those achieved in totally cloud-free conditions can be achieved down to cloud 

top levels. The accuracy of the profile retrieved below cloud top level is dependent upon the 

optical depth and fractional coverage of the clouds. This EOF regression has laid an initial step 

dealing with infrared sounding data under cloudy conditions, which might be further improved 

by a physical iteration inversion. The correct implementation still requires a considerable 

research development effort. However, cloudy sky radiative transfer models now exist which 

should enable the extraction of profile information from cloud contaminated radiances suitable 

for numerical weather prediction (NWP) application. These cloudy observations for NWP 

analyses are under investigation. 
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Table 1 - Cloud parameters retrieval accuracy over dependent samples. 

7.6 5.6 -0.5 -0.2 

13 



z 
E 
0 200 5 
v 

m 

400 

600 
800 
1000 

0 2 4 6 - 
Temp STDE (K) 

400 
600 
800 
1000 - 

0 2 4  6 
Temp STDE (K) 

Fig. 1. Retrieval accuracy analyses through semi-transparent clouds: (a) for optical depth 
(visible) less than 4, (b) for optical depth (visible) less than one. 
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Fig. 2. Panel (a) NAST-I retrieved cloud top height compared with the CPL measured cloud top 
heights of top 2 layers. Panel (b) NAST-I retrieved cloud optical depth (effective visible) 
compared with the CPL measurement. Panels (c) and (d) plot NAST-I retrieved temperature and 
relative humidity vertical cross sections, respectively. The areas wiped off are under the top 
layer clouds where the cloud visible optical depth is larger than one and under the lower 
“opaque” cloud. 
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Fig. 3. NAST-I retrieval compared with coincident dropsonde. 
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