1,366 research outputs found

    Characterization of the Intra-Unit-Cell magnetic order in Bi2Sr2CaCu2O8+d

    Full text link
    As in YBa2Cu3O6+x and HgBa2CuO8+d, the pseudo-gap state in Bi2Sr2CaCu2O8+d is characterized by the existence of an intra-unit-cell magnetic order revealed by polarized neutron scattering technique. We report here a supplementary set of polarized neutron scattering measurements for which the direction of the magnetic moment is determined and the magnetic intensity is calibrated in absolute units. The new data allow a close comparison between bilayer systems YBa2Cu3O6+x and Bi2Sr2CaCu2O8+d and rise important questions concerning the range of the magnetic correlations and the role of disorder around optimal doping.Comment: 12 pages, 8 figures, submitted to physical review

    Distortion of the Stoner-Wohlfarth astroid by a spin-polarized current

    Full text link
    The Stoner-Wohlfarth astroid is a fundamental object in magnetism. It separates regions of the magnetic field space with two stable magnetization equilibria from those with only one stable equilibrium and it characterizes the magnetization reversal of nano-magnets induced by applied magnetic fields. On the other hand, it was recently demonstrated that transfer of spin angular momentum from a spin-polarized current provides an alternative way of switching the magnetization. Here, we examine the astroid of a nano-magnet with uniaxial magnetic anisotropy under the combined influence of applied fields and spin-transfer torques. We find that spin-transfer is most efficient at modifying the astroid when the external field is applied along the easy-axis of magnetization. On departing from this situation, a threshold current appears below which spin-transfer becomes ineffective yielding a current-induced dip in the astroid along the easy-axis direction. An extension of the Stoner-Wohlfarth model is outlined which accounts for this phenomenon.Comment: 8 pages, 6 figure

    La terre et la vie

    Get PDF

    Relativistic bound states in Yukawa model

    Get PDF
    The bound state solutions of two fermions interacting by a scalar exchange are obtained in the framework of the explicitly covariant light-front dynamics. The stability with respect to cutoff of the Jπ^{\pi}=0+0^+ and Jπ^{\pi}=1+1^+ states is studied. The solutions for Jπ^{\pi}=0+0^+ are found to be stable for coupling constants α=g24π\alpha={g^2\over4\pi} below the critical value αc3.72\alpha_c\approx 3.72 and unstable above it. The asymptotic behavior of the wave functions is found to follow a 1k2+β{1\over k^{2+\beta}} law. The coefficient β\beta and the critical coupling constant αc\alpha_c are calculated from an eigenvalue equation. The binding energies for the Jπ^{\pi}=1+1^+ solutions diverge logarithmically with the cutoff for any value of the coupling constant. For a wide range of cutoff, the states with different angular momentum projections are weakly split.Comment: 22 pages, 13 figures, .tar.gz fil

    Instruments for investigating fitness to drive - needs and expectations in primary care: a qualitative study

    Get PDF
    Background: Primary care physicians are often requested to assess their patients' fitness to drive. Little is however known on their needs to help them in this task. Aims: The aim of this study is to develop theories on needs, expectations, and barriers for clinical instruments helping physicians assess fitness to drive in primary care. Methods: This qualitative study used semi-structured interviews to investigate needs and expectations for instruments used to assess fitness to drive. From August 2011 to April 2013, we recorded opinions from five experts in traffic medicine, five primary care physicians, and five senior drivers. All interviews were integrally transcribed. Two independent researchers extracted, coded, and stratified categories relying on multi-grounded theory. All participants validated the final scheme. Results: Our theory suggests that for an instruments assessing fitness to drive to be implemented in primary care, it need to contribute to the decisional process. This requires at least five conditions: 1) it needs to reduce the range of uncertainty, 2) it needs to be adapted to local resources and possibilities, 3) it needs to be accepted by patients, 4) choices of tasks need to adaptable to clinical conditions, 5) and interpretation of results need to remain dependant of each patient's context. Discussion and conclusions: Most existing instruments assessing fitness to drive are not designed for primary care settings. Future instruments should also aim to support patient-centred dialogue, help anticipate driving cessation, and offer patients the opportunity to freely take their own decision on driving cessation as often as possible

    Detection of coccolithophore blooms with biogeochemical‐argo floats

    Get PDF
    Coccolithophores (calcifying phytoplankton) form extensive blooms in temperate and subpolar oceans as evidenced from ocean-color satellites. This study examines the potential to detect coccolithophore blooms with BioGeoChemical-Argo (BGC-Argo) floats, autonomous ocean profilers equipped with bio-optical and physicochemical sensors. We first matched float data to ocean-color satellite data of calcite concentration to select floats that sampled coccolithophore blooms. We identified two floats in the Southern Ocean, which measured the particulate beam attenuation coefficient (c(p)) in addition to two core BGC-Argo variables, Chlorophyll-a concentration ([Chl-a]) and the particle backscattering coefficient (b(bp)). We show that coccolithophore blooms can be identified from floats by distinctively high values of (1) the b(bp)/c(p) ratio, a proxy for the refractive index of suspended particles, and (2) the b(bp)/[Chl-a] ratio, measurable by any BGC-Argo float. The latter thus paves the way to global investigations of environmental control of coccolithophore blooms and their role in carbon export. Plain Language Summary Coccolithophores are a group of phytoplankton that form an armor of calcite plates. Coccolithophores may form intense blooms which can be identified from space by so-called ocean-color satellites, providing global images of the color of the surface ocean. BioGeoChemical-Argo (BGC-Argo) floats, robots profiling down to 2,000 m with a variety of physicochemical and bio-optical sensors, present an increasingly attractive and cost-effective platform to study phytoplankton blooms and their impact on oceanic biogeochemical cycles. We show that coccolithophore blooms can be detected by BGC-Argo floats with high confidence, hence providing a new way to study them at the global scale as well as their role in sinking carbon. Key Points We matched profiling float trajectories with ocean-color satellite observations of coccolithophore blooms Two simple bio-optical indices permitted successful identification of coccolithophore blooms from floats in the Southern Ocean A method for identifying coccolithophore blooms at the global scale is proposed using regional thresholds of bio-optical float measurement

    La situation financière des grands groupes français demeure solide au premier semestre 2011.

    Get PDF
    Les grands groupes confirment leurs bonnes performances au cours du premier semestre 2011 à tous les niveaux : résultats, investissements, structure financière, trésorerie. Des éléments d’incertitude apparaissent : la conjoncture, la volatilité de certaines composantes des fonds propres et du résultat (goodwill, écarts de conversion…).comptes consolidés IFRS, résultats, grandes entreprises industrielles et commerciales, grands groupes français, other comprehensive income (OCI), entreprises cotées au compartiment A d’Euronext.

    Two-fermion relativistic bound states in Light-Front Dynamics

    Full text link
    In the Light-Front Dynamics, the wave function equations and their numerical solutions, for two fermion bound systems, are presented. Analytical expressions for the ladder one-boson exchange interaction kernels corresponding to scalar, pseudoscalar, pseudovector and vector exchanges are given. Different couplings are analyzed separately and each of them is found to exhibit special features. The results are compared with the non relativistic solutions.Comment: 40 pages, to be published in Phys. Rev. C, .tar.gz fil

    Determination of the spin Hall angle, spin mixing conductance and spin diffusion length in Ir/CoFeB for spin-orbitronic devices

    Full text link
    Iridium is a very promising material for spintronic applications due to its interesting magnetic properties such as large RKKY exchange coupling as well as its large spin-orbit coupling value. Ir is for instance used as a spacer layer for perpendicular synthetic antiferromagnetic or ferrimagnet systems. However, only a few studies of the spintronic parameters of this material have been reported. In this paper, we present inverse spin Hall effect - spin pumping ferromagnetic resonance measurements on CoFeB/Ir based bilayers to estimate the values of the effective spin Hall angle, the spin diffusion length within iridium, and the spin mixing conductance in the CoFeB/Ir bilayer. In order to have reliable results, we performed the same experiments on CoFeB/Pt bilayers, which behavior is well known due to numerous reported studies. Our experimental results show that the spin diffusion length within iridium is 1.3 nm for resistivity of 250 nΩ\Omega.m, the spin mixing conductance geffg_{eff}^{\uparrow \downarrow} of the CoFeB/Ir interface is 30 nm2^{-2}, and the spin Hall angle of iridium has the same sign than the one of platinum and is evaluated at 26% of the one of platinum. The value of the spin Hall angle found is 7.7% for Pt and 2% for Ir. These relevant parameters shall be useful to consider Ir in new concepts and devices combining spin-orbit torque and spin-transfer torque.Comment: 8 pages, 4 figure
    corecore