293 research outputs found

    A Framework to Use Public-Private Partnership for Smart City Projects

    Get PDF
    The concept of Smart City has been emerging as a strategic set of integrated initiatives encompassing infrastructures, technology and digital services for the purpose of enhancing the quality of life of citizens. However, the development and implementation of Smart City projects require considerable investments that are difficult to fund with traditional public finance. In this context, Public-Private-Partnerships (PPP) appear to be suitable solutions to overcome the shortage of public finance and cuts on public spending. However, the adoption of PPP forms for Smart City projects has not been fully explored and only experimentally applied so far. In order to promote the usage of PPP to finance Smart City initiatives, this paper proposes some PPP financial instruments and discusses the associated strengths and weaknesses. In particular, the use of Project Finance, Revenue Sharing and Social Impact Bonds are suggested as sound alternatives and suitable sources of financing for Smart City project

    Using the private finance initiative for energy efficiency projects at the urban scale

    Get PDF
    Purpose – The purpose of this paper is to suggest the usage of the project finance (PF) scheme as a suitable mechanism to fund energy efficiency projects at the urban scale and present its advantages and adoption barriers. Design/methodology/approach – A case study is developed to renew the traffic lighting system of an Italian town via replacement of the old lamps with new light-emitting diode (LED) technology. Several partners are involved in the case project to construct a viable PF arrangement. Findings – The case study presents the viability of the proposed PF scheme that provides for acceptable financial returns and bankability. However, it also shows that the need for short concession periods may call for a public contribution to the initial funding to make the project more attractive to private investors. Practical implications – This case study is a useful guideline for governments and promoters to using the PF arrangement to fund energy efficiency investments in urban settings. It helps designing an appropriate PF scheme and understanding the advantages of PF to reduce risk and, consequently, increase the debt leverage and profitability of energy efficiency projects. Originality/value – This paper contributes to bridging the gap about the lack of works addressing the implementation of the PF mechanism in the energy efficiency sector in urban areas. The importance of this paper is also associated with the shortage of traditional public finance faced by many cities that forces to seek for alternate forms of financing

    The latitude dependence of the rotation measures of NVSS sources

    Full text link
    In this Letter I use the variation of the spread in rotation measure (RM) with Galactic latitude to separate the Galactic from the extragalactic contributions to RM. This is possible since the latter does not depend on Galactic latitude. As input data I use RMs from the catalogue by Taylor, Stil, and Sunstrum, supplemented with published values for the spread in RM (`sigmaRM') in specific regions on the sky. I test 4 models of the free electron column density (which I will abbreviate to `DMinf') of the Milky Way, and the best model builds up DMinf on a characteristic scale of a few kpc from the Sun. sigmaRM correlates well with DMinf. The measured sigmaRM can be modelled as a Galactic contribution, consisting of a term sigmaRM,MW that is amplified at smaller Galactic latitudes as 1/sin|b|, in a similar way to DMinf, and an extragalactic contribution, sigmaRM,EG, that is independent of latitude. This model is sensitive to the relative magnitudes of sigmaRM,MW and sigmaRM,EG, and the best fit is produced by sigmaRM,MW approx. 8 rad/m^2 and sigmaRM,EG approx. 6 rad/m^2. The 4 published values for sigmaRM as a function of latitude suggest an even larger sigmaRM,MW contribution and a smaller sigmaRM,EG. This result from the NVSS RMs and published sigmaRM shows that the Galactic contribution dominates structure in RM on scales between about 1degr -- 10degr on the sky. I work out which factors contribute to the variation of sigmaRM with Galactic latitude, and show that the sigmaRM,EG I derived is an upper limit. Furthermore, to explain the modelled sigmaRM,MW requires that structure in has a 1-sigma spread <~ 0.4 microG.Comment: 6 pages, 3 figures, 1 table. Published in MNRAS Letters; the definitive version is available at wileyonlinelibrary.com, http://onlinelibrary.wiley.com/doi/10.1111/j.1745-3933.2010.00957.x/pd

    Light Emitting Molecular Devices Based on Transition Metals

    Get PDF
    Multicomponent systems have been designed, which are able to perform defined functions related to light emission and quenching. The desired function can be switched ON/OFF by the operator through a chemical input, either a change of pH or a variation of the redox potential. Transition metals (e.g. Ni(II), Cu(II)) are key constituents within the considered systems, playing a distinctive architectural role and favouring electron transfer processes

    Short-term observations of double-peaked Na emission from Mercury's exosphere

    Get PDF
    We report the analysis of short-term ground-based observations of the exospheric Na emission (D1 and D2 lines) from Mercury, which was characterized by two high-latitude peaks confined near the magnetospheric cusp footprints. During a series of scheduled observations from the Télescope Héliographique pour l'Etude du Magnétisme et des Instabilités Solaires (THEMIS) telescope, achieved by scanning the whole planet, we implemented a series of extra measurements by recording the Na emission from a narrow north-south strip only, centered above the two emission peaks. Our aim was to inspect the existence of short-term variations, which were never analyzed before from ground-based observations, and their possible correlation with interplanetary magnetic field variations. Though Mercury possesses a miniature magnetosphere, characterized by fast reconnection events that develop on a timescale of few minutes, ground-based observations show that the exospheric Na emission pattern can be globally stable for a prolonged period (some days) and also exhibits fluctuations in the time range of tens of minutes

    Planetary space weather: scientific aspects and future perspectives

    Get PDF
    International audienceIn this paper, we review the scientific aspects of planetary space weather at different regions of our Solar System, performing a comparative planetology analysis that includes a direct reference to the circum-terrestrial case. Through an interdisciplinary analysis of existing results based both on observational data and theoretical models, we review the nature of the interactions between the environment of a Solar System body other than the Earth and the impinging plasma/radiation, and we offer some considerations related to the planning of future space observations. We highlight the importance of such comparative studies for data interpretations in the context of future space missions (e.g. ESA JUICE; ESA/JAXA BEPI COLOMBO). Moreover, we discuss how the study of planetary space weather can provide feedback for better understanding the traditional circum-terrestrial space weather. Finally, a strategy for future global investigations related to this thematic is proposed

    Analytical model of Europa's O2 exosphere

    Get PDF
    The origin of the exosphere of Europa is its water ice surface. The existing exosphere models, assuming either a collisionless environment (simple Monte Carlo techniques) or a kinetic approach (Direct Monte Carlo Method) both predict that the major constituent of the exosphere is molecular oxygen. Specifically, O2 is generated at the surface through radiolysis and chemical interactions of the water dissociation products. The non-escaping O2 molecules circulate around the moon impacting the surface several times, due to their long lifetime and due to their non- sticking, suffering thermalization to the surface temperature after each impact. In fact, the HST observations of the O emission lines proved the presence of an asymmetric atomic Oxygen distribution, related to a thin asymmetric molecular Oxygen atmosphere. The existing Monte Carlo models are not easily applicable as input of simulations devoted to the study of the plasma interactions with the moon. On the other hand, the simple exponential density profiles cannot well depict the higher temperature/higher altitudes component originating by radiolysis. It would thus be important to have a suitable and user-friendly model able to describe the major exospheric characteristics to use as a tool. This study presents an analytical 3D model that is able to describe the molecular Oxygen exosphere by reproducing the two-component profiles and the asymmetries due to diverse configurations among Europa, Jupiter and the Sun. This model is obtained by a non-linear fit procedure of the EGEON Monte Carlo model (Plainaki et al. 2013) to a Chamberlain density profile. Different parameters of the model are able to describe various exosphere properties thus allowing a detailed investigation of the exospheric characteristics. As an example a discussion on the exospheric temperatures in different configurations and space regions is given

    BepiColombo Venus Flyby Science Operations Feasibility Analysis

    Get PDF
    BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with the Japan Aerospace Exploration Agency (JAXA). The mission consists of 2 spacecraft, ESA’s Mercury Planetary Orbiter (MPO) and JAXA’s Mercury Magnetospheric Orbiter (MMO) that carry in total 17 science payloads for the investigation of Mercury’s structure, interior, composition, morphology, formation, evolution and environment. The Mercury Composite Spacecraft (MCS) made of MPO, MMO, a Mercury Transfer Module (MTM) and a sunshield (MOSIF) will be launched on an escape trajectory that will bring it into heliocentric orbit on its way to Mercury. During the cruise of 7.2 years toward the inner part of the Solar System, BepiColombo will make 1 flyby to the Earth, 2 to Venus, and 6 to Mercury. Only part of its payload will be obstructed by the sunshield and the cruise spacecraft configuration, so that the flybys will allow operations of many instruments, like: spectrometers at many wavelengths, accelerometer, radiometer, ion and electron detectors. A scientific working group (VFBWG, Venus Fly-by Working Group) has recently formed inside the BepiColombo community to identify potentially interesting scientific cases and to promote collaborations during the Venus flybys. At the same time, analyses of science operations requests has been carried out by the Science Ground Segment (SGS) at ESAC and the Operational Ground Segment (OGS) at ESOC to help scientists in the comprehension of feasibility of proposed investigations. The analysis of science observations includes special spacecraft pointing feasibility analysis taking into account the attitude constraints. During interplanetary cruise and outside electric propulsion, the default attitude of MCS is with +Y axis pointed to the Sun. The spacecraft attitude is then adjusted by ground around the sun line such that the angular momentum loading is minimized while ground contact is maximized during ground station passes. For the short duration of scientific interest around the Venus closest approaches, however, the need for angular momentum load minimization can be relaxed and it is possible to offset the Sun direction in the spacecraft composite +YZ plane. The SGS at ESAC developed a tool that allows to check the possibility of observing Venus in different spacecraft configurations for different instruments, for example finding out when Venus is inside a given instrument FoV. With that tool and based on the scientific instruments pointing requests, candidate pointing timelines were extracted, indicating that it is possible to find a suitable spacecraft composite attitude to provide observing opportunities to most instruments requiring specific spacecraft pointing. In addition, the OGS at ESOC analysed the impact of the received scientific requests on power balance, thermal balance and data return and found well within the as-designed capability of the spacecraft. This paper includes a summary of the scientific requests, the analysis carried out by both SGS and OGS and the results of the analysis
    • …
    corecore