385 research outputs found

    Plant Nanobionics and Its Applications for Developing Plants with Improved Photosynthetic Capacity

    Get PDF
    In the present scenario, the ever-growing human population, a decreasing availability of land resources and loss of agricultural productivity are the major global concerns, and these possess a challenge for scientific community. To feed the increasing world population, an increase in the crop productivity with available land resources is one of the essential needs. Crop productivity can be increased by engineering the crop plants for tolerance against various environmental stresses and improving the yield attributes, especially photosynthetic efficiency. Nanomaterials have been developed with new functional properties like improved solar energy harvest. With these nanomaterials, nanobionic plants were developed by the facilitated kinetic trapping of nanomaterials within photosynthetic organelle, that is, chloroplast. The trapping of nanomaterials/nanotubes improved chloroplast carbon capture, that is, photosynthesis by improving chloroplast solar energy harnessing and electron transport rate. Besides improving photosynthesis, nanotubes like poly(acrylic acid) nanoceria (PAA-NC) and single-walled nanotube-nanoceria (SWNT-NC) decrease the amount of reactive oxygen species (ROS) inside extracted chloroplast and influence the sensing process in plants, and these are beneficial for a number of physiological processes. The nanobionic approach to engineer plant functions would lead to an era of plant research at the interface of nanotechnology and plant biology. In this chapter, nanobionic approach, transfer of nanomaterial to plants and their offspring and its potential applications to improve photosynthesis will be discussed

    Sum-Peak-Coincidence Spectrometer and Gamma-Gamma Angular Correlation Studies in Cs<Sup>133</Sup>

    Get PDF

    Characterization of Magnetorheological Finishing Fluid for Continuous Flow Finishing Process

    Get PDF
    Magnetorheological (MR) fluid finishing process is an application of MR technology in which controllability of the MR fluid is used advantageously to finish the workpiece surface. MR finishing fluid changes its stiffness in accordance with the applied magnetic field and hence it behaves like a flexible finishing tool. A relative motion between this tool and workpiece removes the material from the machining surface. The quality of the final finished surface depends on the constituents of the finishing fluid and the applied magnetic field strength as these parameters affect the rheological properties of the fluid. A study on the rheological properties of the fluid at high shear rates is carried out through Taguchi Design of Experiments to characterize its flow behaviour to be used in continuous flow finishing process. Constitutive modeling of the fluid sample is done using Bingham Plastic, Casson Fluid and Herschel Bulkley fluid models to characterize their rheological behavior. The Hershel–Bulkley model is found to be the best suited model for the finishing fluid. Analysis of Variance has revealed that volume percentage of iron particles is the most significant parameter with a contribution of 91.68% on the yield stress and viscosity on the finishing fluid. The highest yield stress of the fluid is observed between magnetic flux density ranges from 0.3 to 0.5 Tesla. An optimised combination is then synthesized to confirm the theoretical results. The effect of temperature is also studied on the optimised fluid which has shown that temperature shares an inverse relation with the yield stress of the finishing fluid

    TPXL-1 activates Aurora A to clear contractile ring components from the polar cortex during cytokinesis

    Get PDF
    During cytokinesis, a signal from the central spindle that forms between the separating anaphase chromosomes promotes the accumulation of contractile ring components at the cell equator, while a signal from the centrosomal microtubule asters inhibits accumulation of contractile ring components at the cell poles. However, the molecular identity of the inhibitory signal has remained unknown. To identify molecular components of the aster-based inhibitory signal, we developed a means to monitor the removal of contractile ring proteins from the polar cortex after anaphase onset. Using this assay, we show that polar clearing is an active process that requires activation of Aurora A kinase by TPXL-1. TPXL-1 concentrates on astral microtubules coincident with polar clearing in anaphase, and its ability to recruit Aurora A and activate its kinase activity are essential for clearing. In summary, our data identify Aurora A kinase as an aster-based inhibitory signal that restricts contractile ring components to the cell equator during cytokinesis.We thank the Caenorhabditis Genetic Center (funded by the National Institutes of Health Office of Research Infrastructure Programs P40 OD010440) for strains. This work was supported by grants to K. Oegema (National Institutes of Health; GM074207), E. Zanin (Deutsche Forschungsgemeinschaft, ZA619/3-1), and A.X. Carvalho (European Research Council; 640553–ACTOMYO). T. Kim was supported by a grant to Arshad Desai (National Institutes of Health; GM074215). K. Oegema receives salary and other support from the Ludwig Institute for Cancer Research. S. Mangal is a member of International Max Planck Research School for Molecular Life Sciences, and J. Sacher is a member of the Life Science Munich graduate program; both thank their programs for support
    corecore