4,299 research outputs found

    A multistream model for quantum plasmas

    Full text link
    The dynamics of a quantum plasma can be described self-consistently by the nonlinear Schroedinger-Poisson system. Here, we consider a multistream model representing a statistical mixture of N pure states, each described by a wavefunction. The one-stream and two-stream cases are investigated. We derive the dispersion relation for the two-stream instability and show that a new, purely quantum, branch appears. Numerical simulations of the complete Schroedinger-Poisson system confirm the linear analysis, and provide further results in the strongly nonlinear regime. The stationary states of the Schroedinger-Poisson system are also investigated. These can be viewed as the quantum mechanical counterpart of the classical Bernstein-Greene-Kruskal modes, and are described by a set of coupled nonlinear differential equations for the electrostatic potential and the stream amplitudes.Comment: 20 pages, 10 figure

    Different Facets of Chaos in Quantum Mechanics

    Full text link
    Nowadays there is no universally accepted definition of quantum chaos. In this paper we review and critically discuss different approaches to the subject, such as Quantum Chaology and the Random Matrix Theory. Then we analyze the problem of dynamical chaos and the time scales associated with chaos suppression in quantum mechanics. Summary: 1. Introduction 2. Quantum Chaology and Spectral Statistics 3. From Poisson to GOE Transition: Comparison with Experimental Data 3.1 Atomic Nuclei 3.2 The Hydrogen Atom in the Strong Magnetic Field 4. Quantum Chaos and Field Theory 5. Alternative Approaches to Quantum Chaos 6. Dynamical Quantum Chaos and Time Scales 6.1 Mean-Field Approximation and Dynamical Chaos 7. ConclusionsComment: RevTex, 25 pages, 7 postscript figures, to be published in Int. J. Mod. Phys.

    Spectral Statistics in Large Shell Model Calculations

    Get PDF
    The spectral statistics of low--lying states of fpfp shell nuclei are studied by performing large shell--model calculations with a realistic nuclear interaction. For CaCa isotopes, we find deviations from the predictions of the random--matrix theory which suggest that some spherical nuclei are not as chaotic in nature as the conventional view assumes.Comment: 9 pages, LaTex, 3 figures available upon request, to appear in Proceedings of the V International Spring Seminar on Nuclear Physics, Ed. by A. Covello (World Scientific

    Large Shell Model Calculations for Calcium Isotopes: Spectral Statistics and Chaos

    Get PDF
    We perform large shell model calculations for Calcium isotopes in the full fp shell by using the realistic Kuo-Brown interaction. The Calcium isotopes are especially interesting because the nearest-neighbour spacing distribution P(s) of low-lying energy levels shows significant deviations from the predictions of the Gaussian Orthogonal Ensemble of random--matrix theory. This contrasts with other neighbouring nuclei which show fully chaotic spectral distributions. We study the chaotic behaviour as a function of the excitation energy. In addition, a clear signature of chaos suppression is obtained when the single-particle spacings are increased. In our opinion the relatively weak strength of the neutron-neutron interaction is unable to destroy the regular single-particle mean-field motion completely. In the neighbouring nuclei with both protons and neutrons in valence orbits, on the other hand, the stronger proton-neutron interaction would appear to be sufficient to destroy the regular mean-field motion.Comment: Latex, 7 pages, 2 postscript figures, to be published in the Proceedings 'Highlights of Modern Nuclear Structure', S. Agata sui due Golfi (italy), Ed. A. Covello (World Scientific

    Comment on "Interaction of two solitary waves in quantum electron-positron-ion plasma" [Phys. Plasmas \textbf{18}, 052301 (2011)]

    Full text link
    Recently, Yan-Xia Xu, et al. in the article Ref. [Phys. Plasmas \textbf{18}, 052301 (2011)] have studied the effects of various plasma parameters on interaction of two ion-acoustic solitary waves in an unmagnetized three-dimensional electron-positron-ion quantum plasma. They have used the extended reductive perturbation technique, the so-called, extended Poincare'-Lighthill-Kuo (PLK) technique, to deduce from the model governing the quantum hydrodynamics (QHD) differential equations leading to the soliton dynamical properties, namely, Korteweg-de Vries evolution equations (one for each wave) and coupled differential equations describing the phase-shift in trajectories of solitons due to the two dimensional collision. The variation of the calculated collision phase-shifts are then numerically inspected in terms of numerous plasma fractional parameters. In this comment we give some notes specific to the validity of the results of above-mentioned article and refer to important misconceptions about the use of the Fermi-temperature in quantum plasmas, appearing in this article and many other recently published ones.Comment: Accepted Journal Physics of Plasma

    A linearized kinetic theory of spin-1/2 particles in magnetized plasmas

    Full text link
    We have considered linear kinetic theory including the electron spin properties in a magnetized plasma. The starting point is a mean field Vlasov-like equation, derived from a fully quantum mechanical treatment, where effects from the electron spin precession and the magnetic dipole force is taken into account. The general conductivity tensor is derived, including both the free current contribution, as well as the magnetization current associated with the spin contribution. We conclude the paper with an extensive discussion of the quantum-mechanical boundary where we list parameter conditions that must be satisfied for various quantum effects to be influential.Comment: 11 page

    Comparison of Stochastic Methods for the Variability Assessment of Technology Parameters

    Get PDF
    This paper provides and compares two alternative solutions for the simulation of cables and interconnects with the inclusion of the effects of parameter uncertainties, namely the Polynomial Chaos (PC) method and the Response Surface Modeling (RSM). The problem formulation applies to the telegraphers equations with stochastic coefficients. According to PC, the solution requires an expansion of the unknown parameters in terms of orthogonal polynomials of random variables. On the contrary, RSM is based on a least-square polynomial fitting of the system response. The proposed methods offer accuracy and improved efficiency in computing the parameter variability effects on system responses with respect to the conventional Monte Carlo approach. These approaches are validated by means of the application to the stochastic analysis of a commercial multiconductor flat cable. This analysis allows us to highlight the respective advantages and disadvantages of the presented method

    Entropy and Wigner Functions

    Full text link
    The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive definite probability distributions which are also admissible Wigner functionsComment: 18 page
    • …
    corecore