52 research outputs found

    Structure and Properties of Dislocations in Silicon

    Get PDF

    Carrier mobility in semiconductors at very low temperatures

    Get PDF
    Carrier mobilities and concentrations were measured for different p- and n-type silicon materials in the temperature range 0.3–300 K. Simulations show that experimentally determined carrier mobilities are best described in this temperature range by Klaassen’s model. Freeze-out reduces the carrier concentration with decreasing temperature. Freeze-out, however, depends on the dopant type and initial concentration. Semi-classical calculations are useful only for temperatures above 100 K. Otherwise quantum mechanical calculations are require

    Stress redistribution in individual ultrathin strained silicon nanowires: a high-resolution polarized Raman study

    Get PDF
    Strain nano-engineering provides valuable opportunities to create high-performance nanodevices by a precise tailoring of semiconductor band structure. Achieving these enhanced capabilities has sparked a surge of interest in controlling strain on the nanoscale. In this work, the stress behavior in ultrathin strained silicon nanowires directly on oxide is elucidated using background-free, high-resolution polarized Raman spectroscopy. We established a theoretical framework to quantify the stress from Raman shifts taking into account the anisotropy associated with the nanowire quasi-one-dimensional morphology. The investigated nanowires have lateral dimensions of 30, 50 and 80 nm and a length of 1 mu m top-down fabricated by patterning and etching 15 nm thick biaxially tensile strained silicon nanomembranes generated using heteroepitaxy and ultrathin layer transfer. The concern over the contribution of Raman scattering at the nanowire oriented sidewalls is circumvented by precisely selecting the incident polarization relative to the sidewalls of the nanowire, thus enabling an accurate and rigorous analysis of stress profiles in individual nanowires. Unlike suspended nanowires, which become uniaxially strained as a result of free surface-induced relaxation, we demonstrated that stress profiles in single nanowires are rather complex and non-uniform along different directions due to the oxide-nanowire interface. As a general trend, higher stresses are observed at the center of the nanowire and found to decrease linearly as a function of the nanowire width. Using multi-wavelength high-resolution Raman spectroscopy, we also extracted the stress profiles at different depths in the nanowire. The residual stress in the top similar to 10 nm of the nanowire was found to be nearly uniaxial and increase from the edge toward the center, which remains highly strained. In contrast, the average stress profiles measured over the whole nanowire thickness exhibit different behavior characterized by a plateau in the region similar to 200 nm away from the edges. Our observations indicate that the lattice near the newly formed free surface moves inwards and drags the underlying substrate leading to a complex redistribution of stress. This nanoscale patterning-induced relaxation has direct implications for electrical and mechanical properties of strained silicon nanowires and provides myriad opportunities to create entirely new strained-engineered nanoscale devices

    The Role of lncRNAs TAPIR-1 and -2 as Diagnostic Markers and Potential Therapeutic Targets in Prostate Cancer

    Get PDF
    In search of new biomarkers suitable for the diagnosis and treatment of prostate cancer, genome-wide transcriptome sequencing was carried out with tissue specimens from 40 prostate cancer (PCa) and 8 benign prostate hyperplasia patients. We identified two intergenic long non-coding transcripts, located in close genomic proximity, which are highly expressed in PCa. Microarray studies on a larger cohort comprising 155 patients showed a profound diagnostic potential of these transcripts (AUC~0.94), which we designated as tumor associated prostate cancer increased lncRNA (TAPIR-1 and -2). To test their therapeutic potential, knockdown experiments with siRNA were carried out. The knockdown caused an increase in the p53/TP53 tumor suppressor protein level followed by downregulation of a large number of cell cycle- and DNA-damage repair key regulators. Furthermore, in radiation therapy resistant tumor cells, the knockdown leads to a renewed sensitization of these cells to radiation treatment. Accordingly, in a preclinical PCa xenograft model in mice, the systemic application of nanoparticles loaded with siRNA targeting TAPIR-1 significantly reduced tumor growth. These findings point to a crucial role of TAPIR-1 and -2 in PCa

    Electronic and Optical Properties of Dislocations in Silicon

    No full text
    Dislocations exhibit a number of exceptional electronic properties resulting in a significant increase of the drain current of metal-oxide-semiconductor field-effect transistors (MOSFETs) if defined numbers of these defects are placed in the channel. Measurements on individual dislocations in Si refer to a supermetallic conductivity. A model of the electronic structure of dislocations is proposed based on experimental measurements and tight binding simulations. It is shown that the high strain level on the dislocation core—exceeding 10% or more—causes locally dramatic changes of the band structure and results in the formation of a quantum well along the dislocation line. This explains experimental findings (two-dimensional electron gas and single-electron transitions). The energy quantization within the quantum well is most important for supermetallic conductivity

    Step-Scan Time Resolution of the photoluminescence of Porous Silicon

    No full text
    Author Institution: Bruker instruments, Inc.; Bruker Analytischen Messtechnik GMBH; Max plank Institut fur MikrostrukturphysikRapid-scan and step-scan time resolved Fourier transform techniques have been employed to monitor the photoluminescence of porous silicon. The 514 nm line of an argon ion laser was chopped and allowed to impinge on a porous silicon wafer. The resultant radiation, centered at 740 nm, was collected through an emission port of a Bruker model IFS 66 spectrometer-Rapid-scan measurements proved too Blow to resolve the photoluminescence decay time, while step-scan measurements revealed a lifetime of 50 ÎĽ\muS

    Charge Carrier Transport along Grain Boundaries in Silicon

    No full text

    Strained Silicon Devices

    No full text
    • …
    corecore