77 research outputs found

    Editorial/Éditorial

    Get PDF

    A parametric study on the influence of steel wool fibers in dense asphalt concrete

    Get PDF
    Environmental conditions combined with traffic loads contribute to premature deterioration of asphalt concrete pavements, reducing their strength and durability over time. To improve it, fibers can be incorporated in the mixture. Additionally, electrically conductive fibers can be used for self-healing purposes. In this context, this paper evaluates the influence of flexible steel fibers (steel wool) on the mechanical and physical properties of dense asphalt concrete. With these purposes, 25 different mixtures, with the same aggregate gradation and amount of bitumen, but with two different fibers lengths, four different percentages, and four different diameters of steel wool have been considered. Additionally, the influence of fibers on test specimens with three different types of damage: water damage, salt water damage and ageing have been evaluated through particle loss tests. Moreover, the influence of different temperatures on the flexural strength of dense asphalt concrete with steel wool fibers has been studied. It was found that steel wool fibers do not significantly improve the mechanical properties and damage resistance of dense asphalt concrete. On the other hand, steel wool fibers can change the air void distribution of a mixture, and therefore even reduce its particle loss resistance. As a recommendation, it is indicated that, for induction heating purposes, short fibers, with big diameters should be used, since they do not seem to alter the original properties of dense asphalt concrete

    Effect of full-size and down-scaled accelerated traffic loading on pavement behavior

    Get PDF
    Accelerated pavement testing (APT) is an effective testing procedure to evaluate asphalt pavements. With APT it is possible to determine and measure the structural response and pavement performance under a controlled, accelerated damage accumulation in a compressed period of time. However, different types of APT technologies can lead to different results. Full-size loading devices simulate road traffic accurately, but are expensive, while down-scaled size simulators are cost effective, nevertheless further away from reality. In this work, two types of APT mobile load simulators with different loading characteristics are compared with respect to pavement response in the field and in the laboratory. The MLS10 is a full-size simulator, whereas the MMLS3 is a one-third scale device. The relationship between the devices was studied in terms of the measured strains induced by both machines in the same pavement. Therefore, a testing field was instrumented with strain gauges and first trafficked with MLS10. Later, a slab of the instrumented pavement was cut off the road and tested in the laboratory with the smaller MMLS3. Furthermore, the structure of the pavement was modelled with a viscoelastic finite element method model and the moving loads of both machines were simulated considering size, speed and approximate footprints of their tires. As for the pavement materials, the properties of the different asphalt layers were determined in the laboratory. Experimentally acquired strain data were used to validate the models. Stress fields under different loading and environmental conditions were analysed and compared. The evaluation shows that the models can predict the pavement response under different loading conditions. However, they still need to be improved to increase the accuracy under different conditions. Further, the analysis of the strains show that both load simulators induce a different stress-strain situation and scaling of the pavement should be considered

    Influence of cement content and environmental humidity on asphalt emulsion and cement composites performance

    Get PDF
    Asphalt and cement concrete are the most popular materials used in the construction of roads, highways, bridge deck surface layers and pavements in airports and other areas with heavy wheel roads. Whereas asphalt possesses, compared to concrete, the advantages of a short curing period, high skid resistance and easy maintenance, it also shows lower fatigue durability, ravelling and rutting due to repeated concentrated loads and susceptibility to temperature changes and moisture. On the other hand, concrete pavements are initially more expensive, have lower driving comfort and are susceptible to cracking due to volume changes and to salt damage. A material with low-environmental impact and with advantages of both asphalt and concrete may be obtained by combining bitumen emulsions and a cementitious material. In this paper, cold asphalt mixtures with different amounts of cement were tested with Marshall stability tests. Selected mixtures were also cured at different environmental relative humidity (35, 70 and 90% RH). By monitoring the mass of the specimens and estimating the water bound by the cement, the total water remaining in the mixtures was calculated. Details of the microstructure in the mixtures were examined with X-ray microtomography. According to the results of the present study, cement contributes to the hardening of cold asphalt mixtures both by creating cement paste bridges between the aggregates and by removing water from the mixtures through cement hydration. Asphalt and cement composites appear to be promising materials for implementation in real pavements, although their rate of hardening needs to be improved furthe

    Modification of asphalt mixtures for cold regions using microencapsulated phase change materials

    Get PDF
    Phase change materials (PCMs) may be used to regulate the temperature of road surfaces to avoid low-temperature damages when asphalt materials become brittle and prone to cracking. With this in mind, different asphalt mixtures were modified with microencapsulated phase change materials (i.e. tetradecane) to assess their thermal benefits during the phase change process. Likewise, the effect on the mechanical performance of PCMs as a replacement of mineral filler was assessed. Special attention was paid to dry and wet modification processes for incorporating the PCMs into the mixtures. The results showed that PCM modifications are indeed able to slow down cooling and affect temperatures below zero. Approximately, a maximum of 2.5 °C offset was achieved under the tested cooling conditions compared to the unmodified reference specimens. Regarding the mechanical response at 0 °C and 10 °C, the results indicated that the PCM modification significantly reduces the stiffness of the material in comparison with the values obtained for the reference mixture

    A cluster-based pore network model of drying with corner liquid films with application to a macroporous material

    Get PDF
    A pore network model (PNM) of drying in a gravity-dominated macroporous material has been developed. The pore network geometry used for the simulations is extracted from microcomputed tomography scans of porous asphalt (PA), a macroporous, hydrophobic material. The drying of liquid water in PA is modeled using a cluster-based approach with a two-step drying process i.e. elements go first from being fully saturated to having liquid only in pore and throat corners, and then to becoming completely dry. The PNM simulations are validated with gravimetric experiments performed under controlled conditions and the simulations show good agreement with experiments for most of the drying period. From experiments, it is seen that drying in PA completely skips the constant drying rate period (CDRP) and instead begins with the decreasing drying rate period (DDRP) due to the poor hydraulic connectivity in PA as a result of its large and hydrophobic pore space. The PNM simulations exhibit CDRP initially and then transitions to DDRP after a third of the total drying time. The CDRP at the beginning of the PNM simulations is due to the simplified liquid configuration assumed in the network, and its duration can be minimized to an extent by increasing the number of hydrophobic pores in the network that does not retain any liquid after drainage. Although promising, the first results call for a more accurate representation of both the complex pore space of PA and the physics involved in drying of a macroporous material

    Investigation of Water Uptake in Porous Asphalt Concrete Using Neutron Radiography

    Get PDF
    Porous asphalt (PA), a highly porous hydrophobic composite material, is subjected to water uptake and the process is documented with neutron radiography (NR). While the un-aged laboratory-prepared PA specimens do not show any water uptake, we observe uptake in aged PA even though the bitumen binder is a hydrophobic material. The moisture content distribution plots derived from the NR images clearly identify regions in the aged specimens where water uptake is active. Two-dimensional degree of saturation (DoS) distribution images, which are obtained by combining micro-computer tomography and NR images, identify those pores where saturated flow is certainly active. However, to clearly distinguish between saturated and unsaturated flows in the remaining wet pores, the DoS distribution images are read together with the three-dimensional PA microstructure obtained by micro-CT. It is observed that uptake begins mainly as unsaturated film/corner flow at large well-defined pores. As this uptaken water travels further into the material, the flow transforms into a combination of saturated flow and unsaturated film/corner flow. Saturated flow is seen to be mostly active in the small pores within the mastic. From the observed succession of unsaturated and saturated flows in an aged PA specimen, it can be concluded that years of environmental and mechanical loading has resulted in the stripping of binder from the aggregate surfaces and has consequently exposed patches of hydrophilic aggregate to water, which enables the capillary uptake of water. We also simulate an absolute permeability experiment and observe that relatively less tortuous and more connected paths play an important role in determining the preferential path of the uptaken water

    How to transform an asphalt concrete pavement into a solar turbine

    No full text
    Asphalt concrete can absorb a considerable amount of the incident solar radiation. For this reason asphalt roads could be used as solar collectors. There have been different attempts to achieve this goal. All of them have been done by integrating pipes conducting liquid, through the structure of the asphalt concrete. The problem of this system is that all pipes need to be interconnected: if one is broken, the liquid will come out and damage the asphalt concrete. To overcome these limitations, in this article, an alternative concept is proposed:parallel air conduits, where air can circulate will be integrated in the pavement structure. The idea is to connect these artificial pore volumes in the pavement to an updraft or to a downdraft chimney. Differences of temperature between the pavement and the environment can be used to create an air flow, which would allow wind turbines to produce an amount of energy and that would cool the pavement down in summer or even warm it up in winter. To demonstrate that this is possible, an asphalt concrete prototype has been created and basics calculations on the parameters affecting the system have been done. It has been found that different temperatures, volumes of air inside the asphalt and the difference of temperature between the asphalt concrete and the environment are critical to maximize the air flow through the pavement. Moreover, it has been found that this system can be also used to reduce the heat island effect
    • …
    corecore