211 research outputs found

    The roles of Eu during the growth of eutectic Si in Al-Si alloys

    Get PDF
    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si

    Comb and Bottlebrush Polymers with Superior Rheological and Mechanical Properties

    Get PDF
    Comb and bottlebrush polymers present a wide range of rheological and mechanical properties that can be controlled through their molecular characteristics, such as the backbone and side chain lengths as well as the number of branches per molecule or the grafting density. This review investigates the impact of these characteristics specifically on the zero shear viscosity, strain hardening behavior, and plateau shear modulus. It is shown that for a comb polymer with an entangled backbone and entangled side chains, a maximum in the strain hardening factor and minimum in the zero shear viscosity η0_{0} can be achieved through selection of an optimum number of branches q. Bottlebrush polymers with flexible filaments and extremely low plateau shear moduli relative to linear polymers open the door for a new class of solvent‐free supersoft elastomers, where their network modulus can be controlled through both the degree of polymerization between crosslinks, nx_{x}, and the length of the side chains, nsc_{sc}, with G0^{0}BB_{BB}≈ρkTnx_{x}1^{−1}(nsc_{sc}+1)1^{−1}

    Reference Interval Estimation from Mixed Distributions using Truncation Points and the Kolmogorov-Smirnov Distance (kosmic)

    Get PDF
    Appropriate reference intervals are essential when using laboratory test results to guide medical decisions. Conventional approaches for the establishment of reference intervals rely on large samples from healthy and homogenous reference populations. However, this approach is associated with substantial financial and logistic challenges, subject to ethical restrictions in children, and limited in older individuals due to the high prevalence of chronic morbidities and medication. We implemented an indirect method for reference interval estimation, which uses mixed physiological and abnormal test results from clinical information systems, to overcome these restrictions. The algorithm minimizes the difference between an estimated parametrical distribution and a truncated part of the observed distribution, specifically, the Kolmogorov-Smirnov-distance between a hypothetical Gaussian distribution and the observed distribution of test results after Box-Cox-transformation. Simulations of common laboratory tests with increasing proportions of abnormal test results show reliable reference interval estimations even in challenging simulation scenarios, when <20% test results are abnormal. Additionally, reference intervals generated using samples from a university hospital’s laboratory information system, with a gradually increasing proportion of abnormal test results remained stable, even if samples from units with a substantial prevalence of pathologies were included. A high-performance open-source C++ implementation is available at https://gitlab.miracum.org/kosmic

    Prevalence of vitamin B12 depletion and deficiency in Liechtenstein

    Get PDF
    Abstract Objective Data about vitamin B12 (B12) deficiency in the general population are scarce. The present study was performed to determine the prevalence of B12 deficiency in the general population of the Principality of Liechtenstein, as well as to identify sub-populations potentially at high risk. Design Retrospective study. Setting Ambulatory setting, population of the Principality of Liechtenstein. Subjects Seven thousand four hundred and twenty-four patients seeking medical attention whose serum samples were referred for routine work-up in an ambulatory setting were consecutively enrolled. Serum total B12 was determined in all patients in this cohort. In addition, for a subgroup of 1328 patients, serum holotranscobalamin was also measured. Prevalence of B12 deficiency was calculated. Further, multivariate logistical regression models were applied to identify covariates independently associated with B12 deficiency and depletion. Results Nearly 8 % of the general population was suffering from either B12 depletion or deficiency. The ratio between B12 depletion and deficiency was 2:1 for all age ranges. Pathological changes were detected predominantly in older people. Female gender was a significant predictor of B12 depletion. In the cohort, nearly 40 % exhibited either depletion or deficiency of B12. Conclusions B12 depletion and deficiency are common in Liechtenstein, a Central European country. The measurement of biochemical markers represents a cost-efficient and valid assessment of the B12 state. When a deficiency of B12 is diagnosed at an early stage, many cases can be treated or prevented, with beneficial effects on individual outcomes and subsequent potential reductions in health-care cost

    Comb and Branch‐on‐Branch Model Polystyrenes with Exceptionally High Strain Hardening Factor SHF > 1000 and Their Impact on Physical Foaming

    Get PDF
    The influence of topology on the strain hardening in uniaxial elongation is investigated using monodisperse comb and dendrigraft model polystyrenes (PS) synthesized via living anionic polymerization. A backbone with a molecular weight of Mw,bb_{w,bb} = 310 kg mol1^{–1} is used for all materials, while a number of 100 short (SCB, Mw,scb_{w,scb} = 15 kg mol1^{–1}) or long chain branches (LCB, Mw,lcb_{w,lcb} = 40 kg mol1^{–1}) are grafted onto the backbone. The synthesized LCB comb serves as precursor for the dendrigraft-type branch-on-branch (bob) structures to add a second generation of branches (SCB, Mw,scb_{w,scb} ≈ 14 kg mol1^{–1}) that is varied in number from 120 to 460. The SCB and LCB combs achieve remarkable strain hardening factors (SHF) of around 200 at strain rates greater than 0.1 s1^{–1}. In contrast, the bob PS reach exceptionally high SHF of 1750 at very low strain rates of 0.005 s1^{–1} using a tilted sample placement to extend the maximum Hencky strain from 4 to 6. To the best of the authors’ knowledge, SHF this high have never been reported for polymer melts. Furthermore, the batch foaming with CO2_{2} is investigated and the volume expansions of the resulting polymer foams are correlated to the uniaxial elongational properties

    A SWMM model for the Astlingen benchmark network

    Get PDF
    Real-time control of urban drainage systems is getting increasing attention due to its potential to reduce urban flooding and pollution to the receiving waters. Considering confidentiality requirements from the water companies, it is not easy for researchers or interested engineers to share models and data of real life urban drainage systems. However, it is very practical to use a benchmark to test and compare different methodologies. This paper contributes: (1) A hydrodynamic SWMM model of the Astlingen benchmark network, developed by working group ‘Integral RTC’ of the German Water Association, which enables a more widespread usage of the network due to SWMM being free and open source; (2) Applications of base case and equal-filling-degree rule-based control concepts to confirm usability of the SWMM model; (3) Preliminary result of model predictive control using this SWMM model.Peer ReviewedPostprint (published version

    Small and Medium Amplitude Oscillatory Shear Rheology of Model Branched Polystyrene (PS) Melts

    Get PDF
    Linear and nonlinear rheological properties of model comb polystyrenes (PS) with loosely to densely grafted architectures were measured under small and medium amplitude oscillatory shear (SAOS and MAOS) flow. This comb PS set had the same length of backbone and branches but varied in the number of branches from 3 to 120 branches. Linear viscoelastic properties of the comb PS were compared with the hierarchical model predictions. The model underpredicted zero-shear viscosity and backbone plateau modulus of densely branched comb with 60 or 120 branches because the model does not include the effect of side chain crowding. First- and third-harmonic nonlinearities reflected the hierarchy in the relaxation motion of comb structures. Notably, the low-frequency plateau values of first-harmonic MAOS moduli scaled with M2^{-2}w_{w} (total molecular weight), reflecting dynamic tube dilution (DTD) by relaxed branches. Relative intrinsic nonlinearity Q0_{0} exhibited the difference between comb and bottlebrush via no low-frequency Q0_{0} peak of bottlebrush corresponding to backbone relaxation, which is probably related to the stretched backbone conformation in bottlebrush

    The Functional Trajectory in Frail Compared With Non-frail Critically Ill Patients During the Hospital Stay

    Get PDF
    Background: Long-term outcome is determined not only by the acute critical illness but increasingly by the reduced functional reserve of pre-existing frailty. The patients with frailty currently account for one-third of the critically ill, resulting in higher mortality. There is evidence of how frailty affects the intrahospital functional trajectory of critically ill patients since prehospital status is often missing. Methods: In this prospective single-center cohort study at two interdisciplinary intensive care units (ICUs) at a university hospital in Germany, the frailty was assessed using the Clinical Frailty Scale (CFS) in the adult patients with critical illness with an ICU stay >24 h. The functional status was assessed using the sum of the subdomains "Mobility" and "Transfer" of the Barthel Index (MTB) at three time points (pre-hospital, ICU discharge, and hospital discharge). Results: We included 1,172 patients with a median age of 75 years, of which 290 patients (25%) were frail. In a propensity score-matched cohort, the probability of MTB deterioration till hospital discharge did not differ in the patients with frailty (odds ratio (OR) 1.3 [95% CI 0.8-1.9], p = 0.301), confirmed in several sensitivity analyses in all the patients and survivors only. Conclusion: The patients with frailty have a reduced functional status. Their intrahospital functional trajectory, however, was not worse than those in non-frail patients, suggesting a rehabilitation potential of function in critically ill patients with frailty
    corecore