9 research outputs found

    Genomic Insights into the Formation of Human Populations in East Asia

    Get PDF
    厦门大学人类学研究所、厦门大学生命科学学院细胞应激生物学国家重点实验室王传超教授课题组与哈佛医学院David Reich教授团队合作,联合全球43个单位的85位共同作者组成的国际合作团队通过古DNA精细解析东亚人群形成历史。研究人员利用古DNA数据检验了东亚地区农业和语言共扩散理论,综合考古学、语言学等证据,该研究系统性地重构了东亚人群的形成、迁徙和混合历史。这是目前国内开展的东亚地区最大规模的考古基因组学研究,此次所报道的东亚地区古人基因组样本量是以往国内研究机构所发表的样本量总和的两倍,改变了东亚地区尤其是中国境内考古基因组学研究长期滞后的局面。 该研究是由王传超教授团队与哈佛医学院(David Reich教授)、德国马普人类历史科学研究所(Johannes Krause教授)、复旦大学现代人类学教育部重点实验室(李辉教授和金力院士)、维也纳大学进化人类学系(Ron Pinhasi副教授)、南洋理工大学人文学院(Hui-Yuan Yeh助理教授)、俄罗斯远东联邦大学科学博物馆(Alexander N Popov研究员)、西安交通大学(张虎勤教授)、蒙古国国家博物馆研究中心、乌兰巴托国立大学考古系、华盛顿大学人类学系、台湾成功大学考古所、加州大学人类学系等全球43个单位的85位共同作者组成的国际合作团队联合完成的。厦门大学人类学研究所、厦门大学生命科学学院细胞应激生物学国家重点实验室为论文第一完成单位。厦门大学人类学研究所韦兰海副教授、胡荣助理教授、郭健新博士后、何光林博士后和杨晓敏硕士参与了研究工作。The deep population history of East Asia remains poorly understood due to a lack of ancient DNA data and sparse sampling of present-day people1,2. We report genome-wide data from 166 East Asians dating to 6000 BCE-1000 CE and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan plateau are linked by a deeply-splitting lineage likely reflecting a Late Pleistocene coastal migration. We follow Holocene expansions from four regions. First, hunter-gatherers of Mongolia and the Amur River Basin have ancestry shared by Mongolic and Tungusic language speakers but do not carry West Liao River farmer ancestry contradicting theories that their expansion spread these proto-languages. Second, Yellow River Basin farmers at ~3000 BCE likely spread Sino-Tibetan languages as their ancestry dispersed both to Tibet where it forms up ~84% to some groups and to the Central Plain where it contributed ~59-84% to Han Chinese. Third, people from Taiwan ~1300 BCE to 800 CE derived ~75% ancestry from a lineage also common in modern Austronesian, Tai-Kadai and Austroasiatic speakers likely deriving from Yangtze River Valley farmers; ancient Taiwan people also derived ~25% ancestry from a northern lineage related to but different from Yellow River farmers implying an additional north-to-south expansion. Fourth, Yamnaya Steppe pastoralist ancestry arrived in western Mongolia after ~3000 BCE but was displaced by previously established lineages even while it persisted in western China as expected if it spread the ancestor of Tocharian Indo-European languages. Two later gene flows affected western Mongolia: after ~2000 BCE migrants with Yamnaya and European farmer ancestry, and episodic impacts of later groups with ancestry from Turan.We thank David Anthony, Ofer Bar-Yosef, Katherine Brunson, Rowan Flad, Pavel Flegontov,Qiaomei Fu, Wolfgang Haak, Iosif Lazaridis, Mark Lipson, Iain Mathieson, Richard Meadow,Inigo Olalde, Nick Patterson, Pontus Skoglund, Dan Xu, and the four reviewers for valuable comments. We thank Naruya Saitou and the Asian DNA Repository Consortium for sharing genotype data from present-day Japanese groups. We thank Toyohiro Nishimoto and Takashi Fujisawa from the Rebun Town Board of Education for sharing the Funadomari Jomon samples, and Hideyo Tanaka and Watru Nagahara from the Archeological Center of Chiba City who are excavators of the Rokutsu Jomon site. The excavations at Boisman-2 site (Boisman culture), the Pospelovo-1 site (Yankovsky culture), and the Roshino-4 site (Heishui Mohe culture) were funded by the Far Eastern Federal University and the Institute of History,Archaeology and Ethnology Far Eastern Branch of the Russian Academy of Sciences; research on Pospelovo-1 is funded by RFBR project number 18-09-40101. C.C.W was funded by the Max Planck Society, the National Natural Science Foundation of China (NSFC 31801040), the Nanqiang Outstanding Young Talents Program of Xiamen University (X2123302), the Major project of National Social Science Foundation of China (20&ZD248), a European Research Council (ERC) grant to Dan Xu (ERC-2019-ADG-883700-TRAM) and Fundamental Research Funds for the Central Universities (ZK1144). O.B. and Y.B. were funded by Russian Scientific Foundation grant 17-14-01345. H.M. was supported by the grant JSPS 16H02527. M.R. and C.C.W received funding from the ERC under the European Union’s Horizon 2020 research and innovation program (grant No 646612) to M.R. The research of C.S. is supported 30 by the Calleva Foundation and the Human Origins Research Fund. H.L was funded NSFC (91731303, 31671297), B&R International Joint Laboratory of Eurasian Anthropology (18490750300). J.K. was funded by DFG grant KR 4015/1-1, the Baden Württemberg Foundation, and the Max Planck Institute. Accelerator Mass Spectrometry radiocarbon dating work was supported by the National Science Foundation (NSF) (BCS-1460369) to D.J.K. and B.J.C. D.R. was funded by NSF grant BCS-1032255, NIH (NIGMS) grant GM100233, the Paul M. Allen Frontiers Group, John Templeton Foundation grant 61220, a gift from Jean-Francois Clin, and the Howard Hughes Medical Institute. 该研究得到了国家自然科学基金“中国东南各族群的遗传混合”、国家社科基金重大项目“多学科视角下的南岛语族的起源和形成研究”、厦门大学南强青年拔尖人才支持计划A类、中央高校基本科研业务费等资助

    Changes in Different Classes of Precipitation and the Impacts on Sediment Yield in the Hekouzhen-Longmen Region of the Yellow River Basin, China

    No full text
    The sediment yield of the Yellow River Basin has obviously decreased since the 1980s, and the impacts of precipitation on sediment yield changes have become increasingly important with the global climate change. The spatial and temporal variations in annual precipitation and different classes of precipitation in the Hekouzhen-Longmen region (HLR) in the middle reaches of the Yellow River Basin were investigated using data collected from 301 rainfall stations from 1966 to 2016. The impacts of precipitation variation on sediment yield were evaluated, and the hydrological modeling method was used to quantitatively assess the attribution of precipitation and other factors to sediment yield changes in the HLR. The results show that the annual precipitation and P10 increased from the northwest to the southeast of the HLR, suggesting it was drier in the northwest region of the HLR. P25 and P50 were mainly concentrated in the northwestern and southwestern parts of the HLR, reflecting that heavy rain was more likely to occur in these regions of the HLR. All of the annual precipitation and different classes of precipitation had no significant changing trends from 1966 to 2016, and the relationship between rainfall and sediment yield obviously changed in 2006. Compared with the average annual mean values from 1966 to 2016, both the annual precipitation and the different classes of precipitation were higher in the HLR during 2007–2016. The sediment yield decrease during 1990–1999 was mainly influenced by precipitation, while other factors were the main driving factor for the sediment yield decrease in the periods of 1980–1989, 2000–2009, and 2010–2016, and other factors have become the dominant driving factors of the sediment yield change in the HLR since 2000

    Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain

    No full text
    Emerging evidence suggests that the gut microbiota may interact with the host brain and play pivotal roles in the pathogenesis of neuropsychiatric disorders. However, the mechanism underlying reciprocal interactions along the microbiota-gut-brain axis in depression remains unclear. In this study, a murine model of chronic restraint stress (CRS) was established to investigate the metabolic signaling of tryptophan (Trp) neurotransmission at the intestinal and central levels in depression. The results showed that CRS mice displayed depression- and anxiety-like behaviors. Additionally, kynurenine (Kyn) and its metabolites, an important Trp metabolic pathway, were strongly activated in the brain. Intriguingly, the Kyn toxic signaling was exacerbated in the gut, especially in the colon. Indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme responsible for Kyn metabolic pathway initiation, was significantly upregulated in the brain and gut in CRS mice compared with control mice, promoting transfer of Trp metabolic pathway to Kyn signaling. Additionally, administration of IDO inhibitor, 1-methyl-tryptophan (1-MT), partially rescued CRS-induced depression- and anxiety-like changes. Moreover, the enhanced intestinal permeability mediated by CRS allowed toxic metabolites to “leak” into the bloodstream. The microbiome profiles of CRS mice displayed obviously altered taxonomic composition and negative correlations were observed between Enterorhabdus, Parabacteroides and Kyn levels in the brain. Reciprocal crosstalk between the brain and gut was further validated by citalopram treatment, IDO inhibitor and microbiota intervention, which counteracted depression-like behavior, Kyn metabolic signaling and microbiota composition in CRS mice. Meanwhile, Parabacteroides treatment affected Trp metabolism in mouse hippocampus, manifesting as elevated concentration of 5-HT as well as ratio of 5-HT to Trp. These results suggest that long-term stress disrupts Kyn metabolism and endocrine function along the gut-brain axis, accompanied by the disrupted homeostasis of certain microbiota, which collectively contribute to the development of depression-like behavior
    corecore