43 research outputs found

    Non-stationary resonance dynamics of weakly coupled pendula

    Full text link
    In this paper we fill the gap in understanding the non-stationary resonance dynamics of the weakly coupled pendula model, having significant applications in numerous fields of physics such as super- conducting Josephson junctions, Bose-Einstein condensates, DNA, etc.. While common knowledge of the problem is based on two alternative limiting asymptotics, namely the quasi-linear approach and the approximation of independent pendula, we present a unified description in the framework of new concept of Limiting Phase Trajectories (LPT), without any restriction on the amplitudes of oscillation. As a result the conditions of intense energy exchange between the pendula and transition to energy localization are revealed in all possible diapason of initial conditions. By doing so, the roots and the domain of chaotic behavior are clarified as they are associated with this transition while simultaneously approaching the pendulum separatrix. The analytical findings are corrobo- rated by numerical simulations. By considering the simplest case of two weakly coupled pendula, we pave the ground for new opening possibilities of significant extensions in both fundamental and applied directions.Comment: 7 pages, 7 figure

    Semi-Inverse Method in the Nonlinear Dynamics

    Get PDF
    The semi-inverse method based on using an internal small parameter of the nonlinear problems is discussed on the examples of the chain of coupled pendula and of the forced pendulum. The efficiency of such approach is highly appeared when the non-stationary dynamical problems are considered. In the framework of this method we demonstrate that both the spectrum of nonlinear normal modes and the interaction of them can be analysed successfully

    Nonlinear vibrations and energy distribution of Single-Walled Carbon Nanotubes

    Get PDF
    The nonlinear vibrations of Single-Walled Carbon Nanotubes are analysed. The Sanders-Koiter elastic shell theory is applied in order to obtain the elastic strain energy and kinetic energy. The carbon nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields. The theory considers geometric nonlinearities due to large amplitude of vibration. The displacement fields are expanded by means of a double series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. The Rayleigh-Ritz method is applied in order to obtain approximate natural frequencies and mode shapes. Free boundary conditions are considered. In the nonlinear analysis, the three displacement fields are re-expanded by using approximate eigenfunctions. An energy approach based on the Lagrange equations is considered in order to obtain a set of nonlinear ordinary differential equations. The energy distribution of the system is studied by considering combinations of different vibration modes. The effect of the conjugate modes participation on the energy distribution is analysed

    Nonlinear Dynamics of Single-Walled Carbon Nanotubes

    Get PDF
    The nonlinear dynamics of Single-Walled Carbon Nanotubes is studied. The Sanders-Koiter elastic shell theory is applied. The carbon nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields. Free boundary conditions are considered. The total energy distribution of the system is studied by considering the combinations of different vibration modes. The effect of the companion mode participation on the energy distribution is analysed

    Nonlinear dynamics of Single-Walled Carbon Nanotubes

    Get PDF
    The nonlinear vibrations of Single-Walled Carbon Nanotubes are analysed. The Sanders-Koiter elastic shell theory is applied in order to obtain the elastic strain energy and kinetic energy. The carbon nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields. The theory considers geometric nonlinearities due to large amplitude of vibration. The displacement fields are expanded by means of a double series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. The Rayleigh-Ritz method is applied to obtain approximate natural frequencies and mode shapes. Free boundary conditions are considered. In the nonlinear analysis, the three displacement fields are re-expanded by using approximate eigenfunctions. An energy approach based on the Lagrange equations is considered in order to obtain a set of nonlinear ordinary differential equations. The total energy distribution of the shell is studied by considering combinations of different vibration modes. The effect of the conjugate modes is analysed

    Nonlinear vibrations and energy distribution of carbon nanotubes

    Get PDF
    The nonlinear vibrations of Single-Walled Carbon Nanotubes are analysed. The Sanders-Koiter thin shell theory is applied in order to obtain the elastic strain and kinetic energy. The carbon nanotube deformation is described in terms of axial, circumferential and radial displacement fields. The theory considers geometric nonlinearities due to large amplitude of vibration. The displacement fields are expanded by means of a double series based on harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. The Rayleigh-Ritz method is applied to obtain approximate natural frequencies and mode shapes. Free boundary conditions are considered. In the nonlinear analysis, the three displacement fields are re-expanded by using approximate eigenfunctions. An energy approach based on the Lagrange equations is then considered to obtain a set of nonlinear ordinary differential equations. The total energy distribution of the shell is studied by considering combinations of different vibration modes. The effect of the conjugate modes is analysed

    Nonlinear oscillations and energy localization in carbon nanotubes

    Get PDF
    In this paper, the low-frequency nonlinear oscillations and energy localizations of Single-Walled Carbon Nanotubes (SWNTs) are analysed. The SWNTs dynamics is studied within the framework of the Sanders-Koiter thin shell theory. The circumferential flexure vibration modes (CFMs) are considered. Simply supported boundary conditions are investigated. Two different approaches are compared, based on numerical and analytical models. The numerical model uses a double series expansion for the displacement fields based on the Chebyshev polynomials and harmonic functions. The Lagrange equations are considered to obtain a set of nonlinear ordinary differential equations of motion which are solved using the implicit Runge-Kutta numerical method. The analytical model considers a reduced form of the shell theory assuming small circumferential and tangential shear deformations. The Galerkin procedure is used to get the nonlinear ordinary differential equations of motion which are solved using the multiple scales analytical method. The natural frequencies obtained by considering the two approaches are compared in linear field. The effect of the aspect ratio on the analytic and numerical values of the localization threshold is investigated in nonlinear field
    corecore