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Abstract. The nonlinear vibrations of Single-Walled Carbon Nanotubes are analysed. The 

Sanders-Koiter thin shell theory is applied in order to obtain the elastic strain and kinetic 

energy. The carbon nanotube deformation is described in terms of axial, circumferential 

and radial displacement fields. The theory considers geometric nonlinearities due to large 

amplitude of vibration. The displacement fields are expanded by means of a double series 

based on harmonic functions for the circumferential variable and Chebyshev polynomials 

for the longitudinal variable. The Rayleigh-Ritz method is applied to obtain approximate 

natural frequencies and mode shapes. Free boundary conditions are considered. In the 

nonlinear analysis, the three displacement fields are re-expanded by using approximate 

eigenfunctions. An energy approach based on the Lagrange equations is then considered to 

obtain a set of nonlinear ordinary differential equations. The total energy distribution of 

the shell is studied by considering combinations of different vibration modes. The effect of 

the conjugate modes is analysed. 
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1. INTRODUCTION 

Carbon Nanotubes were discovered in 1991 by Iijima [1], who first analysed the synthesis 

of molecular carbon structures in the form of fullerenes and reported the preparation of the 

carbon nanotubes, as helical microtubules of graphitic carbon. 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/54012141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


       Rao et al. [2] studied the vibrations of SWNTs by Raman scattering experimental 

techniques with laser excitation wavelengths in the range of the nanometres. They observed 

Raman peaks, which correspond to vibrational modes of the nanotubes. 

       Gupta et al. [3] simulated the mechanical behaviour of SWNTs with free edges by 

using the MD potential. They considered the effect of the chirality and geometry on the 

natural frequencies of longitudinal, torsional and inextensional modes. 

       Arghavan and Singh [4] carried out a numerical study on the free and forced vibrations 

of SWNTs considering the FE method. They studied different boundary conditions, 

obtaining natural frequencies, mode shapes, time histories and spectra. 

       Wang et al. [5] examined applicability and limitations of different simplified models of 

elastic cylindrical shells for general cases of static buckling and free vibrations. They 

considered Flugge, Donnell thin shell and Donnell shallow shell models. 

       Strozzi et al. [6] considered the linear vibrations of SWNTs for different boundary 

conditions in the framework of the Sanders-Koiter thin shell theory. They studied several 

types of nanotubes by varying aspect ratio and chirality in a wide range of the natural 

frequency spectrum. 

       In the present paper, the nonlinear vibrations of SWNTs are analysed. The Sanders-

Koiter thin shell theory is applied. The displacement fields are expanded by means of a 

double series based on harmonic functions for the circumferential variable and Chebyshev 

polynomials for the longitudinal variable. 

       The Rayleigh-Ritz method is applied to obtain approximate natural frequencies and 

mode shapes. Free boundary conditions are considered. 

       In the nonlinear analysis, the three displacement fields are re-expanded by using 

approximate eigenfunctions. 

       The Lagrange equations are considered in order to obtain a set of nonlinear ordinary 

differential equations. 

       The total energy distribution is studied by considering different combined modes. The 

effect of the conjugate modes participation on the energy distribution is analysed. 

2. SANDERS-KOITER THEORY 

In Figure 1, a circular cylindrical shell having radius R, length L and thickness h is shown; a 

cylindrical coordinate system (O; x, θ, z) is considered to take advantage from the axial 

symmetry of the structure, the origin O of the reference system is located at the centre of 

one end of the cylindrical shell. 

       Three displacement fields are represented: longitudinal u (x, θ, t), circumferential v (x, 

θ, t) and radial w (x, θ, t), where the radial displacement field w is considered positive 

outward, (x, θ) are the longitudinal and angular coordinates of an arbitrary point on the 

middle surface, z is the radial coordinate along the thickness h and t denotes the time 

variable. 

       Parameter (η = x/L) is the nondimensional longitudinal coordinate of the shell, (β = 

h/L) denotes a nondimensional parameter and τ is the nondimensional time variable, which 

is obtained by introducing a reference natural frequency ω0. 

3. ELASTIC STRAIN ENERGY 

The nondimensional elastic strain energy of a cylindrical shell, by neglecting the transverse 

normal stress σz (plane stress) and shear strains (γxz, γθz) (Kirchhoff’s hypothesis), is written 

in the form 
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where (
,0 ,0 ,0, , x x    ) denote the nondimensional middle surface strains and ( , , x xk k k 

) 

denote the nondimensional middle surface changes in curvature and torsion. 

4. KINETIC ENERGY 

The nondimensional kinetic energy of a cylindrical shell is given by 
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where ( , ,u v w ) denote the nondimensional displacement fields and (
' ' ', ,u v w ) denote the 

nondimensional velocity fields. 

 

 

 

Figure 1. Geometry of the shell. (a) Complete shell; (b) cross-section of the shell surface. 
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5. LINEAR VIBRATION ANALYSIS 

A modal vibration can be written in the form 
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( , , ) ( , ) ( )v V      
 

( , , ) ( , ) ( )w W      
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where ( , ),U   ( , ),V   ( , )W   is the linear mode shape previously obtained and ( )  is 

the nondimensional time law. 

       The mode shape is expanded by means of a double mixed series in terms of Chebyshev 

polynomials Tm
*
(η) in the axial direction and harmonic functions (cos nθ, sin nθ) in the 

circumferential direction 
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where Tm
*
 = Tm (2η – 1), m denotes the Chebyshev polynomials order and n is the number 

of nodal diameters. 

6. BOUNDARY CONDITIONS 

Free-free boundary conditions are given by 
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where the nondimensional force ( , , )x x xN N Q  and moment ( , )x xM M   resultants are 
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7. RAYLEIGH RITZ METHOD 

The maximum number of variables needed for describing a general vibration mode with n 

nodal diameters is obtained by the relation (Np = Mu + Mv + Mw + 3 – p), where (Mu = Mv = 

Mw) denote the order of the Chebyshev orthogonal polynomials and p describes the number 

of equations for the boundary conditions to be respected. 

       For a multi-mode analysis with different values of nodal diameters n, the number of 

degrees of freedom of the system is computed by the relation (Nmax = Np × (N + 1)), where 

N represents the maximum value of the nodal diameters n considered. 



       Equations (3) are inserted into the expressions of the potential energy U (1) and kinetic 

energy T (2) to compute the Rayleigh quotient *

max( ) / ,R q U T where 
max max( )U U  is 

the maximum of the potential energy in a modal vibration, * 2

max / ,T T  max max( )T T  is 

the maximum of the kinetic energy during a modal vibration, ω is the circular frequency of 

the motion ( ) cos    and , , ,[..., , , ,...]T

m n m n m nq U V W  is the vector of the unknowns. 

       After imposing the stationarity to the Rayleigh quotient, the following eigenvalue 

problem is obtained 
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which furnishes approximate natural frequencies and mode shapes. 

       The approximate mode shape of the j-th mode is given by equations (4-6), where the 

coefficients , , ,( , , )m n m n m mU V W  are substituted with 
( ) ( ) ( )

, , ,( , , ),j j j

m n m n m mU V W  as the components of 

the j-th eigenvector jq  of the equation (9). 

       The vector function 
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is the approximation of the j-th eigenfunction vector of the original problem. 

8. NONLINEAR VIBRATION ANALYSIS 

The three displacement fields ( , , ), ( , , ), ( , , )u v w         are expanded by using both the 

linear mode shapes ( , ), ( , ), ( , )U V W       previously obtained and the conjugate mode 

shapes ( , ), ( , ), ( , )c c cU V W       in the form 
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       The Lagrange equations of motion for free vibrations are expressed in the form 
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       Using the Lagrange equations (12), a set of nonlinear ordinary differential equations is 

then obtained; such system is then solved by using numerical methods. 



Table 1. Effective and equivalent parameters of the Single-Walled Carbon Nanotube [5]. 

 
 Effective thickness h0 (nm)  0.10 ÷ 0.15 

 Equivalent thickness h (nm)  0.066 

 Effective Young’s modulus E0 (TPa)  1.0 ÷ 2.0 

 Equivalent Young’s modulus E (TPa)  5.5 

 Effective Poisson’s ratio ν0  0.12 ÷ 0.28 

 Equivalent Poisson’s ratio ν  0.19 

 Surface density of graphite σ (kg/m2)  7.718 × 10-7 

 Equivalent mass density ρ (kg/m3)  11700 

 

9. NUMERICAL RESULTS 

In order to study the discrete carbon nanotube as a continuum elastic thin shell, equivalent 

parameters must be considered [5]. These parameters are reported in Table 1. 

       The present model is then validated with the molecular dynamics data available in the 

literature [3]; the results reported in Table 2 show that the present model is accurate. 

       In Figures 2 (a-f), three mode shapes of a free-free carbon nanotube are presented, such 

modes are considered for the development of the semi-analytic nonlinear model of the 

carbon nanotube in the re-expansion of Equation (11). 

       In Figures 3-5, energy distributions in linear and nonlinear field are shown. Different 

modes are studied. The carbon nanotube is unwrapped on a plane to allow the energy 

representation. The damping is not considered and the total energy is constant (integral of 

density over the surface). 

       The sequence of Figures 3 (a-d) shows the distribution of the energy density [Jm
-2

] in 

linear field for the modes (0,2), (2,2) in a time range. 

       The analysis of the total energy distribution over the nanotube surface shows a 

periodicity along the circumferential direction. Moreover, the energy is distributed 

symmetrically with respect to the longitudinal direction because two symmetric modes 

(0,2) and (2,2) are combined. 

       Figures 4 (a-d) show the distribution of the energy density in nonlinear field for the 

combined modes (0,2) and (2,2) in a time range. By comparing the linear and nonlinear 

analyses (with the same modal initial conditions), the nonlinear distribution evolves in a 

more complex patter, where the total energy periodicity and symmetry are preserved along 

the circumferential and longitudinal direction, respectively. 

 

 

Table 2. Natural frequencies of the radial breathing mode (j = 0, n = 0): comparisons 

between Sanders-Koiter theory (SKT) and Molecular Dynamics Simulations (MDS). 

 
Natural frequency (THz) Difference % 

(r, s) SKT - Present model MDS - Ref. [3]  

(10, 0) 8.966 8.718 2.84 

(6, 6) 8.636 8.348 3.45 

(12, 0) 7.478 7.272 2.83 

(7, 7) 7.399 7.166 3.25 

(8, 8) 6.473 6.275 3.15 

(14, 0) 6.414 6.235 2.87 

(16, 0) 5.606 5.455 2.77 

(10, 10) 5.184 5.026 3.14 
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Figure 2. Mode shapes of the SWNT (r = 10, s = 0, L = 10 nm). Equivalent parameters. 

Free edges. Conjugate modes. (a),(b) Modes (0,2). (c),(d) Modes (1,2). (e),(f) Modes (2,2). 
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Figure 3. Total energy distribution Ẽ (η, θ, τ). Combined modes (0,2), (2,2). 

Linear analysis. (a) τ = 0.00. (b) τ = 1.26. (c) τ = 2.51. (d) τ = 3.77. 
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Figure 4. Total energy distribution Ẽ (η, θ, τ). Combined modes (0,2), (2,2). 

Nonlinear analysis. (a) τ = 0.00. (b) τ = 1.26. (c) τ = 2.51. (d) τ = 3.77. 
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       Figure 5. Total energy distribution Ẽ (η, θ, τ). Conjugate modes (1,2). 

Nonlinear analysis. (a) τ = 8.00. (b) τ = 8.02. (c) τ = 8.04. (d) τ = 8.06. 

 



       The sequence of Figures 5 (a-d) shows the energy density distribution in nonlinear field 

for the two conjugate modes (1,2) in a time range. The periodicity along the circumferential 

direction is preserved. 

       The activation of the second mode implies an energy transfer between the conjugate 

modes. The participation of both the two conjugate modes gives rise to a travelling wave 

which moves circumferentially around the shell. 

10.  CONCLUSIONS 

In this paper, the nonlinear vibrations of SWNTs are studied within the framework of the 

Sanders-Koiter elastic shell theory. The Rayleigh-Ritz method is applied in order to obtain 

approximate natural frequencies and mode shapes. The present model is validated in linear 

field with data available in the literature. An energy approach based on the Lagrange 

equations is considered to obtain a set of nonlinear ordinary differential equations. The total 

energy distribution is analysed in linear and nonlinear fields by assuming suitable initial 

conditions. The nonlinear energy distribution evolves in a complex pattern with periodicity 

along the circumferential direction. The participation of two conjugate modes gives rise to 

an energy transfer between the modes. The periodicity along the circumferential direction is 

preserved. A travelling wave moving circumferentially around the shell takes place. 
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