264 research outputs found

    Towards the second order adaptation in the next generation remote patient management systems

    Get PDF
    Remote Patient Management (RPM) systems are expected to be increasingly important for chronic disease management as they facilitate monitoring vital signs of patients at their home, alerting the care givers in case of worsening. They also provide patients with educational content. RPM systems collect a lot of (different types of) data about patients, providing an opportunity for personalizing information services. In our recent work we highlighted the importance of using available information for personalization and presented a possible next generation RPM system that enables personalization of educational content and its delivery to patients. We introduced a generic methodology for personalization and emphasized the role of knowledge discovery (KDD). In this paper we focus on the necessity of the second-order adaptation mechanisms in the RPM systems to address the challenge of continuous on-line (re)learning of actionable patterns from the patient data

    Heart failure hospitalization prediction in remote patient management systems

    Get PDF
    Healthcare systems are shifting from patient care in hospitals to monitored care at home. It is expected to improve the quality of care without exploding the costs. Remote patient management (RPM) systems offer a great potential in monitoring patients with chronic diseases, like heart failure or diabetes. Patient modeling in RPM systems opens opportunities in two broad directions: personalizing information services, and alerting medical personnel about the changing conditions of a patient. In this study we focus on heart failure hospitalization (HFH) prediction, which is a particular problem of patient modeling for alerting. We formulate a short term HFH prediction problem and show how to address it with a data mining approach. We emphasize challenges related to the heterogeneity, different types and periodicity of the data available in RPM systems. We present an experimental study on HFH prediction using, which results lay a foundation for further studies and implementation of alerting and personalization services in RPM systems

    Patient condition modeling in remote patient management : hospitalization prediction

    Get PDF
    In order to maintain and improve the quality of care without exploding costs, healthcare systems are undergoing a paradigm shift from patient care in the hospital to patient care at home. Remote patient management (RPM) systems offer a great potential in reducing hospitalization costs and worsening of symptoms for patients with chronic diseases, e.g., heart failure and diabetes. Different types of data collected by RPM systems provide an opportunity for personalizing information services, and alerting medical personnel about the changing conditions of the patient. In this work we focus on a particular problem of patient modeling that is the hospitalization prediction. We consider the problem definition, our approach to this problem, highlight the results of the experimental study and reflect on their use in decision making

    Aminoglycoside antibiotics and autism: a speculative hypothesis

    Get PDF
    BACKGROUND: Recently, it has been suspected that there is a relationship between therapy with some antibiotics and the onset of autism; but even more curious, some children benefited transiently from a subsequent treatment with a different antibiotic. Here, we speculate how aminoglycoside antibiotics might be associated with autism. PRESENTATION: We hypothesize that aminoglycoside antibiotics could a) trigger the autism syndrome in susceptible infants by causing the stop codon readthrough, i.e., a misreading of the genetic code of a hypothetical critical gene, and/or b) improve autism symptoms by correcting the premature stop codon mutation in a hypothetical polymorphic gene linked to autism. TESTING: Investigate, retrospectively, whether a link exists between aminoglycoside use (which is not extensive in children) and the onset of autism symptoms (hypothesis "a"), or between amino glycoside use and improvement of these symptoms (hypothesis "b"). Whereas a prospective study to test hypothesis "a" is not ethically justifiable, a study could be designed to test hypothesis "b". IMPLICATIONS: It should be stressed that at this stage no direct evidence supports our speculative hypothesis and that its main purpose is to initiate development of new ideas that, eventually, would improve our understanding of the pathobiology of autism

    Heart failure hospitalization prediction in remote patient management systems

    Full text link
    Healthcare systems are shifting from patient care in hospitals to monitored care at home. It is expected to improve the quality of care without exploding the costs. Remote patient management (RPM) systems offer a great potential in monitoring patients with chronic diseases, like heart failure or diabetes. Patient modeling in RPM systems opens opportunities in two broad directions: personalizing information services, and alerting medical personnel about the changing conditions of a patient. In this study we focus on heart failure hospitalization (HFH) prediction, which is a particular problem of patient modeling for alerting. We formulate a short term HFH prediction problem and show how to address it with a data mining approach. We emphasize challenges related to the heterogeneity, different types and periodicity of the data available in RPM systems. We present an experimental study on HFH prediction using, which results lay a foundation for further studies and implementation of alerting and personalization services in RPM systems

    Differential Regulation of the Period Genes in Striatal Regions following Cocaine Exposure

    Get PDF
    Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc) and Caudate Putamen (CP), regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per) genes and Neuronal PAS Domain Protein 2 (Npas2) are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput)) protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2. © 2013 Falcon et al

    Understanding communication networks in the emergency department

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emergency departments (EDs) are high pressure health care settings involving complex interactions between staff members in providing and organising patient care. Without good communication and cooperation amongst members of the ED team, quality of care is at risk. This study examined the problem-solving, medication advice-seeking and socialising networks of staff working in an Australian hospital ED.</p> <p>Methods</p> <p>A social network survey (Response Rate = 94%) was administered to all ED staff (n = 109) including doctors, nurses, allied health professionals, administrative staff and ward assistants. Analysis of the network characteristics was carried out by applying measures of density (the extent participants are concentrated), connectedness (how related they are), isolates (how segregated), degree centrality (who has most connections measured in two ways, in-degree, the number of ties directed to an individual and out-degree, the number of ties directed from an individual), betweenness centrality (who is important or powerful), degree of separation (how many ties lie between people) and reciprocity (how bi-directional are interactions).</p> <p>Results</p> <p>In all three networks, individuals were more closely connected to colleagues from within their respective professional groups. The problem-solving network was the most densely connected network, followed by the medication advice network, and the loosely connected socialising network. ED staff relied on each other for help to solve work-related problems, but some senior doctors, some junior doctors and a senior nurse were important sources of medication advice for their ED colleagues.</p> <p>Conclusions</p> <p>Network analyses provide useful ways to assess social structures in clinical settings by allowing us to understand how ED staff relate within their social and professional structures. This can provide insights of potential benefit to ED staff, their leaders, policymakers and researchers.</p

    High-Resolution, In Vivo Magnetic Resonance Imaging of Drosophila at 18.8 Tesla

    Get PDF
    High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays

    Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi)

    Get PDF
    BACKGROUND: RNA interference (RNAi) is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly) gene (corresponding to a putative gene CG5652/GM06434), that we named beltless based on an embryonic loss-of-function phenotype. RESULTS: Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp) beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless) of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1)RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1)RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. CONCLUSIONS: We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF) NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should elucidate the role and mechanism of action of beltless during Drosophila development and in adults, including in the adult nervous system

    Zicam-Induced Damage to Mouse and Human Nasal Tissue

    Get PDF
    Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc), a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction
    • …
    corecore