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Abstract. In order to maintain and improve the quality of care with-
out exploding costs, healthcare systems are undergoing a paradigm shift
from patient care in the hospital to patient care at home. Remote patient
management (RPM) systems offer a great potential in reducing hospital-
ization costs and worsening of symptoms for patients with chronic dis-
eases, e.g., heart failure and diabetes. Different types of data collected
by RPM systems provide an opportunity for personalizing information
services, and alerting medical personnel about the changing conditions
of the patient. In this work we focus on a particular problem of patient
modeling that is the hospitalization prediction. We consider the prob-
lem definition, our approach to this problem, highlight the results of the
experimental study and reflect on their use in decision making.

1 Introduction

Chronic diseases are the leading cause of death and healthcare costs in the de-
veloped countries. Healthcare systems are undergoing a paradigm shift from
patient care in the hospital to the patient care at home [3]. It is believed that
RPM systems, by providing adequate patient monitoring, instruction, educa-
tion and motivation (all of which can be done outside of the hospital) facilitate
normalization of the patients conditions and prevent re-hospitalization.

Recently, a possible architecture of the next generation of personalized RPM
systems was introduced, and a general process of knowledge discovery from RPM
data, leading to identification of potentially useful features and patterns for
patient modeling and construction of adaptation rules, was considered [2].

In this paper we focus on the problem of timely patient hospitalization pre-
diction, particularly Heart Failure Hospitalization (HFH). Currently, domain
experts are using manually designed triggers that should trigger an alarm in the
case of possible HFH. Our study shows that with the intelligent data analysis
approach for patient modeling, which utilizes information spread across differ-
ent data sources, it is possible to learn predictive models that are more accurate
than the expert-authored triggering rules (with statistical significance).
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2 Hospitalization prediction

The problem of HFH prediction can be defined in the following way: based on the
available data about a patient at moment ti cast a prediction (and raise an alarm
if deemed necessary) on a daily basis whether the hospitalization for this patient
is likely to occur within the next 14 day period, ti . . . ti+14. Figure 1 illustrates the
timeline of data availability used by a domain expert or an automated classifier
for facilitating this decision making.

Fig. 1. Hospitalization prediction for the following 14 day window.

At the time of enrolment (t0) of a patient, complete medical history data
(corresponds to H features) is recorded. A record may contain dozens of fields
providing different information such as information related to previous hospital
admissions, existence of valve diseases, evidence of coronary diseases, arrhyth-
mias, devices implanted, etc. During a monthly phone contact (MCj) patients
are asked to assess quality of life (QoL) symptoms (S features), and report addi-
tional data such as disease and non-disease medication (or medication change),
number of visits/contacts (at home, by phone, at the office, at the clinic) in the
last month. The patients are monitored on a daily basis regarding their vital
signs such as weight or blood pressure (source for constructing D features).

Figure 2 shows our approach of constructing positive training instances, i.e.
the case when HFH took place. We find a day on which HFH has occurred (th),
then take the 14 days window [th−14, th) to compute features related to daily
measurements. It should be noticed that data for computing these features may
include days outside this two week window.

Fig. 2. Forming of a positive (hospitalization tool place) training instance.
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3 Experimental study

We performed a quantitative evaluation of our approach on an extract from the
TEN-HMS dataset [1] containing information about 426 patients with cardio-
vascular diseases, 43 of which had at least one HFH.

Our experiment setup consisted of two major steps. In the fist place we ap-
plied different classification techniques, including e.g. support vector machines
(SVM), decision trees (J48), and rule-based learners (JRip)3. By means of cross-
validation on the training data, we searched for and fixed the best parameters for
each classification technique and best feature set from S, H and D groups of fea-
tures. Then, the selected classifiers were compared against individual triggering
rules on the testing data. All the learnt classifiers were statistically significantly
more accurate (about 10% on average) than any of the individual triggering
rules according to paired t-test with respect to Youden index (YI) that regards
true positive rate (TPR) and false positive rate (FPR) as equally important. J48
showed the lowest FPR, yet having slightly lower YI than SVM and JRip.

4 Conclusions and further work

In this paper4 we presented a general approach for modeling patient state from
historical data of different kinds, including vital signs, system usage, medical
history and regular interviews and questionaires. We illustrated the potential of
our approach on the example of the HFH prediction problem by providing the
results of an experimental study with the data from a real clinical trial.

Our work laid the foundation for facilitating better personalization and alert-
ing services in RPM systems, and we plan to continue working in this direction,
particularly improving HFH prediction. We plan to make use of the educational
data, motivational messages and other feedback provided to the patient by an
RPM system or medical personnel, to obtain reliable and up-to-date information
about the symptoms, and to make our prediction approach context-aware.
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