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Abstract

Remote Patient Management (RPM) systems are ex-
pected to be increasingly important for chronic disease
management as they facilitate monitoring vital signs of pa-
tients at their home, alerting the care givers in case of wors-
ening. They also provide patients with educational content.
RPM systems collect a lot of (different types of) data about
patients, providing an opportunity for personalizing infor-
mation services. In our recent work we highlighted the im-
portance of using available information for personalization
and presented a possible next generation RPM system that
enables personalization of educational content and its de-
livery to patients. We introduced a generic methodology for
personalization and emphasized the role of knowledge dis-
covery (KDD). In this paper we focus on the necessity of the
second-order adaptation mechanisms in the RPM systems
to address the challenge of continuous on-line (re)learning
of actionable patterns from the patient data.

1 Introduction

Remote patient management (RPM) systems offer a po-
tential for reducing hospitalization costs and worsening of
symptoms for patients with chronic diseases, e.g., coronary
artery disease, heart failure, and diabetes. An RPM sys-
tem both monitors vital signs and provides a feedback to
the patient in terms of appropriate education and coaching.
Although the large volumes of data collected by RPM sys-
tems provide an opportunity for tailoring and personalizing
information services, there is a limited understanding of the
necessary architecture, methodology, and tailoring criteria
to facilitate personalization of the content.

In our recent work [7] we presented an architecture of
the next generation RPM systems that facilitates personal-

ization of educational content and its delivery to patients.
We also introduced a generic approach for personalization
of RPM and thereafter focused on (off-line) knowledge dis-
covery from patients’ data from a clinical trial.

In this paper we go one step further highlighting the im-
portance and the necessity of continuous on-line (second
order) adaptation in RPM systems, i.e., developing a mech-
anism which would adjust or adapt the behavior of the adap-
tive system.

The rest of the paper is organized as follows. We briefly
review the state of the art in RPM systems and present our
view on the next generation of RPM systems in Section 2.
In Section 3 we discuss the potential of second-order adap-
tation mechanisms in RPM systems and consider a few hy-
pothetical examples of gradual and abrupt concept drift, re-
occurring contexts and context-aware learning. We con-
clude with brief discussion and outline the directions of the
future work in Section 4.

2 Remote Patient Management Systems

Existing commercial RPM systems normally provide an
end-to-end infrastructure that connects patients at home
with health professionals at their institution. The patients at
home are equipped with a number of sensors measuring vi-
tal signs to obtain objective measurements about their phys-
ical condition. The vital sign measurements (e.g. weight,
blood pressure, glucose) are transferred to the monitoring
and management server. Subjective measurements (e.g.,
symptoms and quality of life scores) are collected from the
patients via questionnaires. Objective and subjective mea-
surements (referred to as RPM data) are presented to the
medical professional who, based on the indicated deviations
from the normal values, adjusts the patient’s treatment plan,
including medications and lifestyle goals (e.g., nutrition and
physical activity).
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The majority of commercial RPM systems only have the
link between the patient and professional that enables up-
loading patient data to the professional for review and treat-
ment changes; these systems are typically referred to as re-
mote patient monitoring systems as they provide only mon-
itoring, but not the management part.

The current commercial systems typically send the same
generic non-personalized content to all the patients, regard-
less of their current health condition, knowledge level, or a
mental state.

Research on personalization is ongoing in e-Learning
and there is a number of successful implementations of
adaptive hypermedia systems like AHA!, Interbook, etc.
[1]. However, existing architectures are not adopted in
eHealth applications such as RPM systems. Furthermore,
in the mentioned systems, the adaptation and personaliza-
tion is pre-authored and thus remains highly static and often
subjective based on some domain expertise translated to the
machine readable form.

Developing personalized RPM systems is possible only
if we can learn key (potentially changing and dynamic)
characteristics of the patients and track them continu-
ously. Personalization can be organized using individual
and group (or stereotype) user modeling. In a stereo-
type approach, the users are classified into several groups.
In eHealth applications users can be classified according
to their main disease, background in medicine (patients,
nurses, and physicians), general education background (no
degree, college degree, doctorate, etc), and their tasks (con-
sultation, education, and emergency cases). Individual pa-
tient (user) models, besides the user’s medical profile, could
include also individual characteristics such as cognitive and
psychological individual peculiarities, the interaction pa-
rameters – the last visited pages, used links, number of the
particular pages visits, resource usages etc. Table 1 gives
an overview of possible features of various data classes that
can play a role in the patient model of an RPM system. A
feature can be static, e.g. gender, residence, language, or
relatively static, e.g., age, cognitive impairment (which a
patient can develop during the usage of RPM system) and
dynamic, e.g., values of weight measurements or system us-
age. The example given is for heart failure, but can be gen-
eralized to any of chronic diseases given a specific set of
relevant symptoms and vital signs for that chronic disease.

Dynamic features plays an important role in the patient
model of RPM system. This calls for the second-order
adaptation mechanisms in the RPM systems to address the
challenge of continuous on-line (re)learning of actionable
patterns from the patient data.

Table 1. Typical features included in a patient
model template

Changes
Data class Feature

Static Dynamic

Gender x

Age x

Country x
Demographic

Language x

Living status Single/Family x

Weight x

Height x

Body Mass Index x

Edema x

Baseline data

Biomarker values x

Cause of disease x

Co-morbidities x
Medical

history
Implantables x x

Ankle swelling x

Breathlessness x

Depression x
Symptoms

Anxiety x

weight x

heart rate x

blood pressure x

Vital signs

(Frequencies

of values out

of band) diastolic blood pressure x

weight x

blood pressure x

System usage

(Frequency of

measurements

)
heart rate x

Verbaliser/Imager x
Learning styles

FD/FI x

Reduced eyesight xCognitive

function Dementia x

Legend: Frequency of vital sign measurements - how often the

patient has been using a sensor for a measurements (1 – every

day, 0- not at all), – field dependent/independent.FD/FI

3 Second-order adaptation

In our recent work [7] we suggested a general architec-
ture of an personalized RPM system in which we followed
general principles of personalization in e-Learning systems
with KDD process as one of the key integrated components.
Figure 1 depicts a part of the architecture that could provide
a possible foundation for the next generation adaptive RPM
systems.

The key components of the system that facilitate person-
alization and adaptation include: (1) patient (user) model,
(2) domain model, (3) adaptation rules, (4) adaptation en-
gine, and (5) KDD process. Further, there are authoring
and management tools allowing medical experts and pro-
fessionals to monitor, control and manage patient models,
domain models and adaptation rules.

In this section we consider briefly the role of knowl-
edge discovery for patient modeling and provide motivat-
ing examples for handling gradual and sudden changes in
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Figure 1. A high level view of the next generation RPM system [7]

the modeled concepts, and for learning contextual features
describing reoccurring contexts.

3.1 Knowledge discovery for patient mod-
eling in RPM systems

The KDD process is essential for discovering relevant ac-
tionable patterns that are the basis for creation of the patient
model and the adaptation rules. This KDD process is (ini-
tially) done “off-line”, using stable historical data available
from an existing RPM database or from completed clinical
trials relevant for the disease in question. Via this KDD pro-
cess we obtain relevant patterns that are used to build a pa-
tient model template. The same patterns are utilized to build
the adaptation rules and domain model of the available con-
tent material that is stored in corresponding databases. The
KDD is highly iterative and interactive and involves consid-
erable effort from domain and KDD experts. Moreover, this
is by no means one-time activity. With accumulation of new
evidence and possible contextual changes, models and rules
might need an update or extension.

Even-pattern and time-series analysis are particularly
helpful in getting a better understanding of what features
and relations between them may potentially describe patient
current state and its short-term and long-term dynamics.

In general different types of approaches can be used for
discovery of useful patterns, including association analysis,
subgroup discovery, etc. In this study we search for dis-
criminating patterns by defining corresponding classifica-
tion tasks. For example, we searched for rules that would
predict next symptom status and change in next symptom
values, using the last symptom status, gender, age, and fre-
quency of daily system usage in the period between two

symptoms (typically one month) as predictive features.

Table 2 illustrates example patterns found (with the help
of popular J48 and JRIP classification techniques) for two
most prominent symptoms, breathlessness and swelling of
ankles. We obtained off-line the exact number for the level
of the usage of the system (i.e., freqOfWeightUsage),
but have replaced that with a parameter (Low, Medium,
High) because it changes over time. We discuss extensively
in the next section how this parameter changes in the con-
text of necessity for second-order adaptation. From Table
2 we can observe that women in general are at higher risk
to remain breathless (P1) and remain with swelling ankles
if they do not use the system regularly (P4-P5). In gen-
eral, patients are in risk if they are under-utilizing the sys-
tem (P2-P3), while male patient population above 75 is at
risk for worsening of their condition (P6). We refer an in-
terested reader to [7] for a more detailed discussion of the
KDD process and a particular case study.

In Table 3 we present possible adaptation rules based on
previously discovered patterns P1-P6 2. These rules mostly
identify patients at risk for worsening of their condition, no-
tify the medical professional about risk, and send adequate
content to the patient so that worsening can be prevented.
E.g., the first rule based on pattern P1 would send con-
tent material to the patient to help her master her breathing,
while at the same time notify the medical professional that
this woman is at risk to remain breathless. Similarly the
second rule based on patterns P2-P3 would identify patient
at risk and send appropriate educational and instructional
material to the patient and notification about risk to the pro-
fessional. In this case a patient needs to be motivated to use
the system, and properly instructed how to do so.

Level of system usage (denoted freqOfWeightUsage
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Table 3. Examples of adaptation rules

P# Possible Rule
Desired effect

Patient Medical professional

P1
If Sex=F and BreathlessSymptom=B then Send

videos with breathing exercises
Regain control over the breathing

Notification for patient at

risk

P2,

P3

If BreathlessSymptom=A and Age=(37.5-81.5] and
(feqOfWeightUsage <0.4 or freqOfPulseUsage <

0.4) then Send Motivational content

Motivation, instruction for using

the system, education on

breathlessness

Notification of patient at
risk

P4

If SwellingSymptom = ‘B’ and Sex = ‘F’ and

freqOfWeightUsage < 0.6 then Send Motivational

video Motivation, instruction for using

the system, education on swelling

ankles

Alert for additional

action

P5

If StartSymptom = ‘S’ and Sex = ‘F’ and

freqOfWeightUsage < 0.6 and Age < 74.5 then

Send motivational content

Notification of patient at

risk

P6
If SewllingSymptom = ‘S’ and Sex = ‘M’ and Age

> 74.5 then Send educational content

Motivation, education on

importance of managing condition

Notification of patient at

risk

Table 2. Examples of discovered patterns

Patterns Symptom

P1 (StartSymptom = ‘B’) & (Sex = F) =>

NextSymptom = B

Breath-

lessness
P2 (StartSymptom = ‘A’) & (Age = '(37.5-81.5]') &

(freqOfWeightUsage < 0.4) => NextSymptom = ‘B’

P3 (StartSymptom = ‘A’) & (Age = '(37.5-81.5]') &

(freqOfPulseUsage < 0.4) => NextSymptom = ‘B’

P4 (StartSymptom = ‘B’) & (Sex = ‘F’) &

(freqOfWeightUsage < 0.6) => NextSymptom = ‘B’

Swelling

of ankles

P5 (StartSymptom = ‘S’) & (Sex = ‘F’) &

(freqOfWeightUsage < 0.6) & (Age < 74.5)=>

NextSymptom = ‘W’

P6 (StartSymptom = ‘S’) & (Sex = ‘M’) &

(Age >=74.5) => NextSymptom = ‘B’

Legend: Start/Next Symptom: G = good (no problem), S = small prob-

lems, A = average, B = bad (many problems), W = worse, I = improved

in Table 3) is one of the user model parameters that clearly
has significant impact on adaptation. We consider the pos-
sibly changing nature of the freqOfWeightUsage con-
cept to motivate the necessity for second-order adaptation
in terms of handling a concept drift.

3.2 Coping with sudden and gradual
changes

The user parameters discovered in the patterns, such as
level of system usage is likely to change over time due to (i)
change in patient motivation to use the system because of
the educational and instructional material that has been sent,
(ii) change in patients’lifestyle habits impact of these to the

usage of the system), (iii) change in seasonal patterns as pa-
tients tend to measure themselves differently during sum-
mer compared to winter or during working days compared
to public holidays, or (iv) any other hidden context. The
system needs to be able to detect and adapt to the changes
quickly and without additional input from the patient, e.g.,
by collecting additional evidence for motivation or lifestyle
habit changes1.

Consider the following example presented in Figure 2. It
shows how the progression of the disease can develop over
time. The patients could be placed on the system with only
one co-morbidity, and due to their age and progression of
the chronic disease (heart failure) could develop a number
of other conditions. The bottom figure shows what could
be the effect of additional conditions to the system usage.
Namely, with the increase in number of conditions the pa-
tients’ overall health could significantly decade (while pos-
sibly keeping the main parameters of heart failure still in the
normal ranges), directly influencing the patient’s motivation
and ability to measure him/herself.

Another example is the change of the patient’s cognitive
abilities. The decline in cognitive abilities could occur for
patient over time and it could possibly effects the usage of
the system. For example, the patient could become more
forgetful, develop initially very mild, mild, or sever case
of dementia. This could directly impact his ability to use
the system - (s)he would start forgetting to weight or mea-
sure blood pressure, initially sporadically, and then more
and more often.

It is rather intuitive that besides system usage, such pa-
rameters as patient’s weight and weight change can trigger

1Even if one would like to measure motivation by asking the patient,
that would be least preferred option as already patients are faced with many
symptom questions they need to answer on daily basis.
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Figure 2. Changes in co-morbidities and ex-
pected system usage over time.

different The weight of the patient could increase over the
time. Normally the rule for alerting the care giver about
the risk of heart failure is very simple: if weight increase is
more than 2 kilos over 1-2 days, raise an alert. However,
there are patients who decompensate with slow increase of
weight over period of 10-15 days. Hence, it could hap-
pen that the patient gets hospitalized without the alert be-
ing raised due to slow increase. The system should be able
to learn the slow increase in weight for these patients and
adopt the alerting rules accordingly. Furthermore different
external events like national and religious holidays can af-
fect normal eating habits. Such events can be recognized
from the data and model adjusted accordingly, or proactive
handling of possible change could be implemented,

As discussed, in RPM systems (and eHealth domain in
general) the concept of interest (user parameters) depends
on a changing context that is not necessarily given explicitly
in the form of predictive features. Hence, stationary data
distribution assumed by majority of traditional data min-
ing techniques in no longer the case. Rather, here we are
faced with concept drift [11], i.e., unforeseen changes over
time in the phenomenon of interest. The phenomenon here
would be the usage of system behavioral pattern relevant to
current potentially hidden context. The concept we are try-
ing to learn (value of the level of system usage) for the true
patient model parameter depends on the observed behavior.

Changes in the hidden context may not only be a cause of
a change of the target concept, but may also cause a change
of the underlying data distribution. Even if the target con-
cept remains the same, and it is only the data distribution
that changes, this may often lead to the necessity of revis-
ing the current model, as the model’s error may no longer
be acceptable with the new data distribution (e.g., more fe-
males added to the system may change the behavior). The
need to the change of current model due to the change of
data distribution is called virtual concept drift [10].

Three approaches to handling concept drift can be distin-
guished: (1) instance selection; (2) instance weighting; and
(3) ensemble learning [8]. In instance selection, the goal is
to select instances relevant to the current concept. The most
common concept drift handling technique is a sliding win-
dow and consists in generalizing from a window that moves
over recently arrived instances and uses the learnt concepts
for prediction only in the immediate future [11].

Instance weighting uses the ability of learning algo-
rithms such as Support Vector Machines (SVMs) to process
weighted instances [2]. Instances can be weighted accord-
ing to different features such as “age” or competence with
regard to the current concept. Klinkenberg [2] demonstrates
in his experiments that instance weighting techniques han-
dle concept drift worse than analogous instance selection
techniques.

Ensemble learning is among the most popular and ef-
fective approaches to handle concept drift, in which a set
of concept descriptions built over different time intervals
is maintained, predictions of which are combined using a
form of voting, or the most relevant description is selected
[4]. Street and Kim [6] and Wang et al. [9] suggest that sim-
ply dividing the data into sequential blocks of fixed size and
building an ensemble on them may be effective for handling
concept drift. Stanley [5] and Kolter and Maloof [3] build
ensembles of incremental learners in an online setting, start-
ing to learn new base classifiers after fixed intervals, while
continuing to update the existing ones.

3.3 Reoccurring contexts and context-
aware adaptation

Figures 3 and 4 show an example of changes in the level
of system usage due to seasonal patterns. Seasonal ”index”
(based on simple average) is used for seasonal construction.
Two types of seasonality are shown: period of the year (fall,
winter, spring, summer), and week days (Monday to Sun-
day). Expected seasonal behavior of male patients from
Figure 3 would be to use the system at most in fall while
female patients in winter and fall. In summer both male and
female patients use the system less, and in spring men use
the system (in average) more than women (less than aver-
age). Figure 4 shows a tendency of both men and women
to use the system less during weekends, and to use the sys-
tem at most on Friday. Additionally, local behaviors, such
as, holidays can change the seasonality concept as during
the holiday (regardless of the day of the week) patients are
under-utilizing the system.

Thus, there exists seasonality behavior in the level of the
usage of the system for different patients, which changes
the concept. This behavior can be detected and handled
by methods which learn from data under the assumption of
concept drift. Once the seasonality is discovered, features
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representing seasonal context, such as holiday, season, and
week day, become a part of the observation set that the sys-
tem is monitoring. Thereby, in the summer or during the
holidays the adaptation rules should be modified to include,
for example, additional content that would motivate the pa-
tients to use the system. Examples of additional rules are
given in Table 4. The difference between rule P8 and rule
P10 is due to the expected decline in usage of the system
during summer, compared to winter. Hence, when the level
of usage of the system is Medium, an alert is sent only in the
winter. Note that behavior described with these additional
rules can further change over time.

Table 4. Examples of additional rules

#P
Additional rules

P9 Season = Winter and Sex = Female and

freqOfWeightUsage = Medium then send additional

motivational content, alert medical professional

P10 Season = Winter and Sex = Female and

freqOfWeightUsage = Low then send additional

motivational material, alert medical professional

P11 Season = Summer and Sex = Female and

freqOfWeightUsage = Medium then send

motivational material, do not alert

P12 Summer = Winter and Holiday = False and

freqOfWeightUsage = Low then send alert to the

medical professionals

P13 Summer = Winter and Holiday = True and

freqOfWeightUsage= Low then do nothing

The direct potential relation between co-morbidities and
usage of the system considered in the earlier example im-
plies that the rules triggering an alert due to non-usage of
the system might need additional conditions that would take
into account number of co- morbidities. The context of co-
morbidities could be known in the system, e.g., the patient
goes to the clinical assessment and notifies caring nurse, but
it could also be hidden in the sense that the patient does not
notify the caring professional about the new disease (which
could be as simple as breaking the leg or falling, or as com-
plex as diabetes or renal failure).

The possibility that usage of the system declines with the
similar rate of decline of patient mental abilities should be
reflected in the system. The system should (i) be able to
detect the pattern of slow decline of the system usage, (ii)
when that is detected, send appropriate cognitive tests to re-
confirm the cognitive decline, and (iii) potentially modify
the alerting rules such that they incorporate the cognition
ability and thereby have the threshold of alerting based on
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the usage of the system different. Moreover, the delivery of
care should be modified to possibly include cognitive ability
tests more regularly.

4 Conclusions and further work

Remote Patient Management (RPM) systems are ex-
pected to be increasingly used in the near future. The cur-
rent generation of RPM systems follows the one-size-fits-all
approach despite of the wide acceptance of the benefits of
personalization and adaptation of information services.

In our work we focused on the data driven approaches
to adaptation. We considered motivating examples which
illustrate ideas behind patient profiling and tailoring the ed-
ucational or motivational content. This allowed us to come
closer to the following challenge – the second order adap-
tation in RPM systems. We illustrated with further more
detailed consideration of naive seasonal and generally time-
changing patterns, the benefits of online learning, concept
drift handling mechanism, and discovery and use of con-
textual features for adapting the set of adaptation rules, and
user modeling procedures.

In this paper we considered mostly either hypothetical
or rather fragmented examples of patient modeling in the
context of the second order adaptation. Our further work
includes knowledge discovery from data collected during
the real clinical studies to justify the advantages of systems
equipped with concept drift handling and context-sensitive
learning mechanisms.

References

[1] P. Brusilovsky and E. Millán. User models for adap-
tive hypermedia and adaptive educational systems.
The Adaptive Web, pages 3–53, 2007.

[2] R. Klinkenberg. Learning drifting concepts: Exam-
ple selection vs. example weighting. Intelligent Data
Analysis, 8(3):281–300, 2004.

[3] J. Z. Kolter and M. A. Maloof. Dynamic weighted ma-
jority: A new ensemble method for tracking concept
drift. In ICDM ’03: Proceedings of the Third IEEE
International Conference on Data Mining, page 123,
Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[4] L. I. Kuncheva. Classifier ensembles for changing en-
vironments. In F. Roli, J. Kittler, and T. Windeatt, edi-
tors, Multiple Classifier Systems, volume 3077 of Lec-
ture Notes in Computer Science, pages 1–15. Springer,
2004.

[5] K. Stanley. Learning concept drift with a committee
of decision trees, 2001.

[6] W. N. Street and Y. Kim. A streaming ensemble al-
gorithm (sea) for large-scale classification. In KDD
’01: Proceedings of the seventh ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 377–382, New York, NY, USA, 2001.
ACM.

[7] A. Tesanovic, G. Manev, M. Pechenizkiy, and E. Vasi-
lyeva. eHealth personalization in the next genera-
tion rpm systems. In Proceedings of IEEE Interna-
tional Symposium on Computer-based Medical Sys-
tems (CBMS 2009)(to appear). IEEE, 2009.

[8] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and
S. Puuronen. Dynamic integration of classifiers for
handling concept drift. Information Fusion, 9(1):56–
68, 2008.

[9] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble classi-
fiers. In KDD ’03: Proceedings of the ninth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 226–235, New York,
NY, USA, 2003. ACM.

[10] G. Widmer and M. Kubat. Effective learning in dy-
namic environments by explicit context tracking. In
ECML ’93: Proceedings of the European Conference
on Machine Learning, pages 227–243, London, UK,
1993. Springer-Verlag.

[11] G. Widmer and M. Kubat. Learning in the presence
of concept drift and hidden contexts. Mach. Learn.,
23(1):69–101, 1996.

40 AIME 2009 workshop on 
Personalisation for eHealth 
Verona, 19 Luglio 2009




