12 research outputs found

    New RM734-like fluid ferroelectrics enabled through a simplified protecting group free synthesis

    Get PDF
    We report a novel and simplified synthetic procedure for making analogues of the widely studied ferroelectric nematogen RM734. Our new procedure focuses on building materials starting from the nitro-terminus and eschewing protecting groups, in contrast to previously reported syntheses. This new synthetic approach confers two principal advantages: firstly, the synthesis of the variants described herein is expedient, being a single step as opposed to three or more via the classical route. Secondly, by forgoing the use of benzyl groups as utilised in the original synthesis we can include functionality that is incompatible with hydrogenolysis conditions (e.g. olefins, late halogens, unsaturated heterocycles). Several of the RM734-like materials we report exhibit ferroelectric nematic phases, and we rationalise the behaviour of these materials with aid of electronic structure calculations, potential energy surface scans and atomistic molecular dynamics simulations

    Rapid conformational analysis of semi-flexible liquid crystals.

    Get PDF
    We present an approach for rapid conformational analysis of semi-flexible liquid crystals. We use a simple graphical user interface (GUI) tool that leverages rules-based methods for efficient generation of bend-angle distributions, offering a significant improvement over traditional single-conformer analysis. Our methods demonstrated proficiency in approximating molecular shapes comparable to those obtained from molecular dynamics (MD) simulations, albeit with notable deviations in the under sampling of hairpin conformations and oversampling of extended configurations. Re-evaluation of existing data revealed an apparent weak correlation between NTB transition temperatures and bend angles, underscoring the complexity of molecular shapes beyond mere geometry. Furthermore, we integrated this conformational analysis into a pipeline of algorithmic molecular design, utilising a fragment-based genetic algorithm to generate novel cyanobiphenyl-containing materials. This integration opens new avenues for the exploration of liquid crystalline materials, particularly in systems where systematic conformer searches are impractical, such as large oligomeric systems. Our findings highlight the potential and growing importance of computational approaches in accelerating the design and synthesis of next-generation liquid crystalline materials

    Room-temperature ferroelectric nematic liquid crystal showing a large and diverging density

    Get PDF
    The ferroelectric nematic phase (NF) is a recently discovered phase of matter in which the orientational order of the conventional nematic liquid crystal state is augmented with polar order. Atomistic simulations suggest that the polar NF¬ phase would be denser than conventional nematics owing to contributions from polar order. Using an oscillating U-tube densitometer, we obtain detailed temperature-dependent density values for a selection of conventional liquid crystals with excellent agreement with earlier reports. Having demonstrated the validity of our method, we then record density as a function of temperature for M5, a novel room-temperature ferroelectric nematic material. We present the first experimental density data for a NF ¬material as well as density data for a nematic that has not previously been reported. We find that the room-temperature NF material shows a large (>1.3 g/cm^3) density at all temperatures studied, notably including phases without polar order. An increase in density at phase transitions is observed. The magnitude of the increase for the intermediate-to-ferroelectric nematic (NX-NF) transition is an order of magnitude smaller than the isotropic-nematic (I-N) transition. We then probe potential consequences that may result from an elevated density through measurement of the refractive indices (n_o and n_e). The n_avg of M5 is compared with 5CB and polar smectic liquid crystals. We observe how the highly polar nature of the system counteracts the effects of an increase in density. With knowledge of experimental density, we are able to derive an approximation that yields the polar order parameter, 〈P1〉, from polarisation measurements. Present results may be typical of ferroelectric nematic materials, potentially guiding material development, and is especially relevant for informing ongoing studies into this emerging class of materials

    Dielectric spectroscopy of a ferroelectric nematic liquid crystal and the effect of the sample thickness

    Get PDF
    The recently discovered ferroelectric nematic liquid crystals have been reported to exhibit very large dielectric permittivity values. Here, we report a systematic investigation of the dielectric behavior of a prototypical ferroelectric nematogen by varying the thickness of the parallel capacitor measuring cell. While in the non-polar high temperature nematic phase results show only slight differences due to slight variations of the alignment, the measured permittivity values in the ferroelectric nematic phase show a linear dependence on the cell thickness. It is also shown that the characteristic relaxation frequency decreases inversely proportionally to the thickness. The results are discussed in terms of three different available models based on different underlying mechanisms, accounting for cancellation of the probe electric fields by polarization reorientation or by ionic charges, or based on a recently proposed continuous phenomenological model

    Distinctive features of pretransitional behaviour between nematic phases as revealed by DDM

    No full text
    Pretransitional behaviour, with strong softening of the bend or splay elastic constants, is characteristic of two of the nematic to nematic phase transitions reported in the last decade. Such softening is strongly reflected in the pretransitional behaviour of the thermally excited director fluctuations. Here we give a comprehensive overview of the cross-Differential Dynamic Microscopy (c-DDM) method and its application to the investigation of thermal director fluctuations and phase transitions. For this, we build on the potentialities of the method for the investigation of the standard nematic phase of E7 to compare with the pretransitional behaviour of the nematic to twist bend nematic phase transition as well as the nematic to ferroelectric nematic transition

    Rapid Conformational Analysis of Semi-Flexible Liquid Crystals

    No full text
    We present an approach for rapid conformational analysis of semi-flexible liquid crystals. We use a simple graphical user interface (GUI) tool that leverages rules-based methods for efficient generation of bend-angle distributions, offering a significant improvement over traditional single-conformer analysis. Our methods demonstrated proficiency in approximating molecular shapes comparable to those obtained from molecular dynamics (MD) simulations, albeit with notable deviations in the under sampling of hairpin conformations and oversampling of extended configurations. Re-evaluation of existing data revealed an apparent weak correlation between NTB transition temperatures and bend angles, underscoring the complexity of molecular shapes beyond mere geometry. Furthermore, we integrated this conformational analysis into a pipeline of algorithmic molecular design, utilizing a fragment-based genetic algorithm to generate novel cyanobiphenyl-containing materials. This integration opens new avenues for the exploration of liquid crystalline materials, particularly in systems where systematic conformer searches are impractical, such as large oligomeric systems. Our findings highlight the potential and growing importance of computational approaches in accelerating the design and synthesis of next-generation liquid crystalline materials

    Polar nematic phases with enantiotropic ferro- and antiferroelectric behaviour

    No full text
    The recent discovery of a new ferroelectric nematic (NF) liquid crystalline phase has become of utmost interest for the liquid crystal (LC) and the whole soft and condensed matter fields. Contrary to the previously known ferroelectric LC materials, whose ferroelectric characteristics were much weaker, new polar nematics exhibit properties comparable to solid ferroelectrics. This discovery brought about tremendous efforts to further explore compounds showing these phases, and fascinating physical properties have been reported. Herein, we present the first synthesized compounds with the enantiotropic ferro- (NF) and antiferroelectric (NX) nematic phases. The enantiotropic nature and an unprecedentedly broad temperature range of NF and NX phases are confirmed by various experimental techniques: polarized-light optical microscopy (POM) observations, different scanning calorimetry (DSC), dielectric spectroscopy, second harmonic generation (SHG), and molecular modeling. The presented achievements in designing achiral compounds that exhibit enantiotropic polar nematic phases with ferro- and antiferroelectric properties significantly contribute to the development of multicomponent mixtures with a broad temperature range of NF and NX phases down to room temperature. Furthermore, this accomplishment considerably enhances the general understanding of the structural correlations that promote polar nematic liquid crystal phases with high thermodynamic stability. Finally, this work may benefit various applications in photonic devices

    The relationship between molecular structure and the incidence of the N<sub>TB</sub> phase

    No full text
    <p>In this work, we present the first part of a study into the relationship between molecular structure and the occurrence of the ‘twist-bend nematic phase’ (N<sub>TB</sub>). Given the large amount of chemical space that might reasonably be expected to give rise to the N<sub>TB</sub> phase, this paper is only concerned with methylene-linked bimesogens bearing polar terminal groups based on the initial work of George Gray on cyanobiphenyls. As with other studies, we find that the N<sub>TB</sub> phase is observed only for materials that contain an odd number of methylene units in the spacer chain. It also appears that, in a given series of materials, there is a weak negative correlation between the dipole moment of the individual mesogenic units and the thermal stability of the N<sub>TB</sub> phase. Furthermore, we find that increasing the length–breadth ratio of the individual mesogenic units also provides a significant increase in the thermal stability of the N<sub>TB</sub> phase. The electrooptic behaviour of two materials, one with a terminal nitrile unit and one with an isothiocyanate group, was investigated. The N<sub>TB</sub> phase of the NCS-terminated material can be switched with a large applied voltage (20 V μm<sup>−1</sup>); however, the analogous nitrile-terminated material showed no electrooptic response under these conditions. Either the threshold voltage to switching is simply lower for isothiocyanate materials than nitriles or that there is more than one phase currently identified as the twist-bend nematic.</p
    corecore