205 research outputs found

    Financial risk assessment methodology for natural hazards

    Get PDF
    Engineered facilities are deemed safe if they have little or no probability of incurring damage when subjected to regular actions or natural hazards. Any probability of the performance of any designed system (i.e. capacity) not being able to meet the performance required of it (i.e. demand) results in risk, which might be expressed either as a likelihood of damage or potential financial loss. Engineers are used to dealing with the former (i.e. damage), which gives a fair indication of repair/strengthening work needed to bring the system back to full functionality. Nevertheless, other non-technical stakeholders (such as owners, insurers, decision-makers) of the designed facilities cannot read too much from damage. Hence, risk, if interpreted in terms of damage only, will not be comprehended by all stakeholders. On the other hand, financial risk expressed in terms of probable dollar loss in easily understood by all. Therefore, there is an impetus on developing methodologies which correlate the system capacity and demand to financial risk. This paper builds on the existing probabilistic risk assessment methodology and extends it to estimate expected annual financial loss. The general methodology formulated in this paper is applicable to any engineered facilities and any natural hazard. To clarify the process, the proposed methodology is applied to assess overall financial risk of a highway bridge pier due to seismic hazar

    Effectiveness of earthquake selection and scaling method in New Zealand

    Get PDF
    In New Zealand, time history analysis is either the required or preferred method of assessing seismic demands for torsionally sensitive and other important structures, but the criteria adopted for the selection of ground motion records and their scaling to generate the seismic demand remains a contentious and debatable issue. In this paper, the scaling method based on the least squares fit of response spectra between 0.4-1.3 times the structure's first mode period as stipulated in the New Zealand Standard for Structural Design Actions: Earthquake Actions (NZS1170.5) [1] is compared with the scaling methods in which ground motion records are scaled to match the peak ground acceleration (PGA) and spectral acceleration response at the natural period of the structure corresponding to the first mode with 5% of critical damping; i.e. Sa(TI, 5%). Incremental dynamic analysis (IDA) is used to measure the record-torecord randomness of structural response, which is also a measure of the efficiency of the intensity measure (IM) used. Comparison of the dispersions of IDA curves with the three different IMs; namely PGA, Sa(Ti, 5%) and NZS1170.5 based TM, shows that the NZS1170.5 scaling method is the most effective for a large suite of ground motions. Nevertheless, the use of only three randomly chosen ground motions as presently permitted by NZS1170.5 is found to give significantly low confidence in the predicted seismic demand. It is thus demonstrated that more records should be used to provide a robust estimate of likely seismic demand

    Semi-active tuned mass damper building systems: Design

    Get PDF
    Passive and semi-active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi-active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two-degree-of-freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi-level seismic intensity. Copyright © 2009 John Wiley & Sons, Lt

    Performance of a Damage Protected Highway Bridge Pier Subjected to Bidirectional Earthquake Attack

    Get PDF
    Recent earthquakes such as Loma Prieta, Northridge, and Kobe have demonstrated a need for a new design philosophy of bridge piers that avoids damage in order to ensure post-earthquake serviceability and reduce financial loss. Damage Avoidance Design (DAD) is one such emerging philosophy that meets these objectives. DAD details require armoring of the joints; this eliminates the formation of plastic hinges. Seismic input energy is dissipated by rocking coupled with supplemental energy dissipation devices. In this paper the theoretical performance of a DAD bridge pier is validated through bi-directional quasi-static and pseudodynamic tests performed on a 30% scale specimen. The DAD pier is designed to rock on steel-steel armored interfaces. Tension-only energy dissipaters are used to increase tie down forces and further reduce dynamic response. The seismic performance of the DAD pier is compared to that of a conventional ductile pier. Results show that one can have 90 percent confidence that the DAD pier will survive a design basis earthquake without sustaining any damage, whereas for the conventional design substantial damage is sustained

    Improved seismic hazard model with application to probabilistic seismic demand analysis

    Get PDF
    An improved seismic hazard model for use in performance-based earthquake engineering is presented. The model is an improved approximation from the so-called 'power law' model, which is linear in log-log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these 'exact' hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance-based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi-analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi-analytical closed form solution is shown to be significantly more accurate than the analytical closed-form solution using the power law hazard model, capturing the 'exact' numerical integration solution to within 7% accuracy over the entire range of exceedance rat

    Analytical Modelling of Jointed Precast Concrete Beam-to-Column Connections with Different Damping Systems

    Get PDF
    Jointed precast concrete systems typically have low inherent damping and are thus particularly suitable for applying supplemental damping systems. Analytical modelling is utilised to characterise jointed beam-to-column rocking connections, using a rate-dependent tri-linear compound version of the well-known Menegotto-Pinto rule. The analytical model is verified against near full-scale experimental results. The beam-column connections are constructed utilising Damage Avoidance Design (DAD) principles with unbonded post-tensioned tendons. High force-to-volume extrusion-based energy dissipaters are externally fitted to provide supplemental energy dissipation and modify joint hysteretic performance. Multiple joint configurations are analysed, with supplemental damping systems modified to investigate the effect of damping forces on joint hysteresis. Particular attention is given to the re-centring limit. Good agreement between the analytical models and experimental results is demonstrated, with discussion of possible improvements. Overall, system damping behaviour is significantly improved by adding the extrusion based damping system

    Spectral Evaluation of High Force-Volume Lead Dampers for Structural Response Reduction

    Get PDF
    Response spectra analysis across multiple earthquake suites is used to investigate the reductions in structural response from the addition of lead extrusion damping, based on ongoing research with high force/volume devices suitable for packaging in beam-column connections. Reduction factor statistics are used to characterise the response using suites of ground motions from the SAC project. Regression analysis is used to characterise reduction factors in the constant acceleration, velocity, and displacement regions of the response spectra. Peak damping reduction factors achieved with the addition of extrusion damping equal to 10% of structural weight are approximately 6.5x, 4.0x, and 2.8x for the low, medium and high ground motion suites respectively, based on a validated full-scale prototype device. The results provide initial proof-of-concept in a performance based design context, at experimentally verified forces, for using these devices to increase the seismic resilience of critical infrastructure

    Off-diagonal 2-4 damping technology using semi-active resetable devices

    Get PDF
    Semi-active resetable devices are an emerging and effective method of minimising structural degradation due to environmental loads. Of particular importance in implementing supplemental damping, such as resetable devices, is the ability to retrofit existing structures. However, supplemental damping also tends to increase base shear demand, limiting practical gains. The use of a two-chamber resetable device enables a control law to be used that adds damping only into quadrants 2 and 4 of the force-deflection plot, adding damping forces on the opposing diagonals to the structural force. Thus, base shear can be reduced, creating significant potential for retrofit applications. The impact of off-diagonal 2-4 damping on the displacement structural response, structural force and total base shear is investigated through spectral analysis. The 2-4 control law is shown to be the only law that can reduce the structural force as well as the total base shear for a structure; a unique result. Off-diagonal damping equal to 100% additional stiffness reduced both the structural force and total base-shear by 20-35%. Therefore, semi-active enabled off-diagonal damping could be incorporated into large scale retrofit applications where present passive approaches have significant limitation
    corecore