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FINANCIAL RISK ASSESSMENT METHODOLOGY FOR 
NATURAL HAZARDS 
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SUMMARY 

Engineered facilities are deemed safe if they have little or no probability of incurring damage when 
subjected to regular actions or natural hazards. Any probability of the performance of any designed 
system (i.e. capacity) not being able to meet the performance required of it (i.e. demand) results in risk, 
which might be expressed either as a likelihood of damage or potential financial loss. Engineers are used 
to in dealing with the former (i.e. damage), which gives a fair indication of repair/strengthening work 
needed to bring the system back to full functionality. Nevertheless, other non-technical stakeholders 
(such as owners, insurers, decision-makers)  of the designed facilities cannot read too much from 
damage. Hence, risk, if interpreted in terms of damage only, will not be comprehended by all 
stakeholders. On the other hand, financial risk expressed in terms of probable dollar loss in easily 
understood by all. Therefore, there is an impetus on developing methodologies which correlate the 
system capacity and demand to financial risk. This paper builds on the existing probabilistic risk 
assessment methodology and extends it to estimate expected annual financial loss. The general 
methodology formulated in this paper is applicable to any engineered facilities and any natural hazard. 
To clarify the process, the proposed methodology is applied to assess overall financial risk of a highway 
bridge pier due to seismic hazard.  

 

                                                                 
1 Department of Civil Engineering, University of Canterbury 

1. INTRODUCTION 

Constructed facilities will be damaged when a natural hazard 
strikes. Nevertheless, the exact extent of damage is extremely 
difficult to be accurately predicted as uncertainties will 
invariably exist in forecasting the likelihood of the hazard 
and also in estimating the facilities’ damage due to a hazard 
of a given intensity. Therefore, a probabilistic interpretation 
of system safety taking into account all the uncertainties 
involved is a more rational approach than the conventional 
deterministic calculation, which gives no assurance to the 
users regarding the level of confidence/reliability of the 
predicted value. In disciplines such as Earthquake 
Engineering, the use of probabilistic risk assessment 
methodologies has been increasing over the last two decades. 
The application of these Earthquake Engineering innovations 
can be extended to other hazards. 

Recently, the Pacific Earthquake Engineering Research 
(PEER) Center has developed an evaluation methodology for 
performance based earthquake engineering [Cornell et al 
2002]. The mathematical foundations of the PEER 
methodology are limited to the probability of a specified type 
of performance not being met. This is based on the so-called 
triple integral formulation. Such a formulation is useful for 
engineers and structural designers, but gives little insight to 
owners, regulators, policy makers, insurers and investors to 
make better judgements and decisions. The intent of the work 
presented herein is to build on the concepts of the seismic-

specific methodology and extend it to an all hazards 
framework. 

Currently, the PEER triple integral total probability 
formulation is be ing brought into question by Der Kiureghian 
[2005]. He points out that real hazards, such as earthquakes, 
are discrete, rather than continuous, events and thus should 
be modelled as a Poisson process. Notwithstanding this, Der 
Kiureghian [2005] concedes that as formulated the PEER 
triple integral should give conservative results, and almost 
exact if the annual probabilities are small (<0.01). 

Until alternative formulations to the PEER triple integral 
obtain more widespread acceptance, it is considered to be a 
sound basis for further development. The final decision 
variable in the current PEER triple integral formulation can 
represent the probability of exceeding a performance 
requirement, which can be set to any level. Nevertheless, risk 
will be better understood by all stakeholders if expressed in 
monetary terms rather than in terms of technical parameters 
representing performance measures. In this study, the PEER 
triple integral is augmented to give an additional dimension – 
time. By aggregating losses over time, better information can 
be made available to the non-engineering community, 
particularly in terms of financial modelling. Therefore, this 
paper goes on to expand the PEER triple integral to a fourth 
integral and explains the significance of the methodology in 
general terms of expected annual losses. It then applies the 
proposed methodology to estimate the financial risk of a 
reinforced concrete bridge pier due to seismic hazards. 
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2. METHODOLOGY 

It is generally accepted that, in its broadest sense, risk is 
defined as the product of the probability of occurrence of a 
certain hazard with a prescribed intensity times the 
consequences of the asset being damaged due to that event. 
Expressed more formally in technical terms: 

 [ ] CIMPR ×=    (1) 

in which P[IM] = probability of occurrence of a hazard of 
magnitude IM where IM = intensity measure; and C = 
consequences of the hazar d. The latter may be in terms of 
damage, facility loss, financial loss, fatalities, or down-time. 
It is necessary to integrate such losses in a systematic way 
over all damage scenarios (whether minor or major) for all 
possible types of events (from small to large, that is the 
frequently occurring event to the most rare event possible).  

All components of the proposed framework are based on the 
basic concept described by Equation 1. For convenience, the 
generic financial risk assessment methodology can be divided 
into several segments as explained below. 

2.1 Hazard-Recurrence Relationship 

Natural hazards are generally expressed by  their magnitude 
in general terms (e.g. Richter scale for earthquakes); but 
engineers quantify the severity of natural hazards in terms of 
the intensity of one or more of its characteristic parameters 
(e.g. peak ground acceleration for earthquakes). The 
probability of occurrence of a natural hazard of given 
intensity depends on the intensity itself, as shown in Figure 1.  
As expected, the probability of a hazard of large intensity is 
small; and conversely, hazards of smaller scale/intensity are 

more likely to occur. 

In the recurrence curve for most hazards, the horizontal axis 
(i.e. the annual probability/frequency) is commonly plotted in 
logarithmic scale. The horizontal axis of the hazard-
recurrence curves may also be plotted in terms of the “Return 
period” which is the reciprocal of the annual frequency. The 
hazard-recurrence curve can be mathematically expressed as: 

( )aPfMI 1
~

=    (2) 

in which MI
~

 = median value of intensity measure of a 
hazard; Pa = annual frequency (probability); and f1(Pa)  
denotes a function which is established for different types of 
hazard based on the hazard modelling and the statistic s of 
historical events. Note that Equation 2 gives only the median 
value of the hazard intensity for a given annual probability, 
and the uncertainty in hazard prediction can be carried 
forward as the lognormal coefficient of variation of the 
relationship, as denoted by βh in Figure 1. 

2.2 Deriving System Demand 

In a given system, a hazard of a given intensity generates a 
certain level of maximum/critical response. The system 
response may be represented by a parameter, which also 
serves as the demand on the syst em when a hazard of the 
prescribed intensity occurs. Obviously, the response 
parameter depends on the intensity of the hazard.   

The system response/demand curve can also be 
mathematically expressed as: 

( )IMfPDE 2
~

=    (3) 

in which PDE
~  = median value of the response parameter 

(commonly known as the Engineering Demand Parameter) 
for the system; f2(IM) = a function of the intensity measure. 
To establish the function f2(IM), an Engineering Demand 
Parameter (EDP) which is likely to depend on the hazard 
intensity needs to be identified. If an interrelationship 
between the hazard intensity (IM) and the selected EDP does 
not already exist, several series of analyses may be needed to 
predict the response/demand of the system to the hazards of 
various intensities and to generate EDP vs. IM relationships.  
Relationship  between the median EDP and IM is 
qualitatively shown in Figure 2. Note that the  uncertainty 
involved in analytically predicting the system response curve 
is represented by the lognormal coefficient of variation (βa) 
of the inter-relationship. 

 
Combining the IM vs. Pa and the IM vs. EDP 
interrelationships (i.e. Equations 2 and 3), a demand equation 
in generic form can be expressed as:  

 ( )aPfPDE 3
~

=    (4) 

in which f3(Pa) = the function which is the product of the 
functions f1 and f2. The interrelationship in Equation 4 can 
also be schematically illustrated as shown in Figure 3, where 
the horizontal axis (i.e. the annual frequency/probability) is 
normally plotted in logarithmic scale. 
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Note that the curve in Figure 3 correlates the median value of 
EDP with the annual frequency, and this EDP-Pa  
interrelationship will have an inherent uncertainty, 
represented by the lognormal coefficient of variation (βd). As 
implied earlier, it can generally be shown that the lognormal 
distribution gives a good fit to the two interrelationships. The 
lognormal relationship is chosen for its convenience because 
it can be simply described by two parameters, x~and β where 
x~ = median and β = lognormal coefficient of variation. For 

the lognormal distribution the coefficient of variation is also 
referred to as the dispersion factor. As the uncertainty in the 
EDP vs. Pa relationship is due to the hazard variability (βh) 
and the analysis uncertainty (βa) coming from  its two 
components (i.e. IM vs. Pa and EDP vs. IM relationships 
respectively), the lognormal coefficient of variation of the 
system response/demand curve (βd) can be calculated by 
combining the former two according to the approach 
suggested by Kennedy et al [1980]. 

22
ahd βββ +=    (5) 

Equation 4 represents an algebraic relationship between the 
median value of EDP and its annual frequency. By knowing 
the median demand and the associated variation, the value of 
the demand parameter with different survival probabilities 
can be obtained [Martinez 2002]. T he calculation needs to be 
dealt with numerically as in most cases a closed-form 
algebraic interrelationship between these parameters may not 
exist. For such cases, the annual frequency of the demand 
parameter exceeding a prescribed edp, denoted as Pa [EDP = 
edp], can be mathematically expressed in discrete and 
continuous forms, respectively, as shown in the two 
equations to follow. 

[ ] [ ] [ ]∑ ≥=≥
iimall

iaia imPimedpEDPPedpEDPP |        (6) 

[ ] [ ] [ ]∫ ≥=≥
1

0

| imdPimedpEDPPedpEDPP aa              (7) 

in which Pa [im] = the annual probability of the intensity 
measure exceeding a given value im; and P [EDP = edp | im] 
= the probability of the demand parameter exceeding a 
prescribed value edp for a given hazard intensity im . The 
value of (Pa [im ]) is to be obtained from the hazard 
recurrence relationship (Fi gure 1) and the latter (P [EDP = 
edp | im]) is to be obtained from response curves with 
different level of confidence that could be drawn in Figure 2 
or could be estimated mathematically based on the median 
demand obtained from Equation 3 and the coefficient of 
variation βa. 

2.3 Estimation of Damage Probability 

In order to assess the damage incurred by a hazard, damage 
has to be interpreted in terms of the demand parameter. It is 
accepted that the system resilience degrades as the incurred 
damage increases. Consequently, the system response 
parameter (EDP) also qualitatively indicates the extent of 
damage incurred. Hence, the next step is to establish a 
damage model correlating the demand/response parameter 
(EDP) and damage.  

An EDP may correspond to different extent of damage within 
a small range and the variability may be closely represented 
by the lognormal distribution as qualitatively illustrated in 
Figure 4. The lognormal coefficient of variation of the 
damage model is denoted as βdm and the median value of the 
damage measure (DM) may be expressed as a function of 
EDP as:  

( )EDPfMD 4
~

=    (8)  

in which MD
~

 = median value of the damage measure; and 
f4(EDP) is a function that depends on the system resilience. 

 
The interrelationship between the damage measure (DM) and 
the response parameter (EDP) may be established based on 
case studies, if any exists, or otherwise based on engineering 
judgement. Note that damage in most cases are represented in 
discrete terms as “limit states” rather than a continuous 
function as assumed above. Hence, an alternative form of 
Equation 8 expressing “probability of a certain limit state 
being exceeded for a given level of response” is used in real 
application instead.  

The resilience equation of the system in general terms can 
now be derived by combining Equations 4 and 8 as 

( )aPfMD 5
~

=    (9) 

in which f5(Pa) is the function which is the product of f3 and 
f4. The graphical plot of Equation 9 is called resilience curve, 
which is schematically shown in Figure 5. Obviously, the 
uncertainty of the hazard-survival relationship (i.e. βs) is 
attributed to the variability in the relationships represented by 
Equations 4 and 8 (βd and βdm, respectively), and can be 
calculated as 

22
dmds βββ +=    (10) 

 
The hazard-survival curve gives the annual frequency of a 
given damage measure being exceeded. As the performance 
requirement of the system is usually pegged with a damage 
measure, the hazard-survival curve also gives the annual 
frequency of intense hazards for which the performance of 
the system cannot survive (i.e. system failure). If the damage 
measure (DM) is probabilistically plotted against the hazard 
intensity (i.e., IM instead of Pa in the horizontal axis in 
Figure 5), the resulting curves are widely known as the 
fragility curves. 
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In probabilistic terms, the annual frequency of the damage  
measure exceeding a prescribed limit dm , denoted as Pa [DM 
= dm ] can be expressed mathematically in discrete and 
continuous forms as shown respectively in the next two 
equations.  

[ ] [ ] [ ]∑ ≥=≥
iedpall

iaia edpPedpdmDMPdmDMP |     (11) 

[ ] [ ] [ ]∫ ≥=≥
1

0

| edpdPedpdmDMPdmDMP aa            (12) 

in which Pa [edp] = the annual probability of the engineering 
demand parameter exceeding a given value edp to be 
obtained from the demand curve (Figure 3); and P [DM = dm  
| edp] = the probability of the damage measure exceeding a 
prescribed limit dm  when the demand parameter is edp,  
which is to be obtained from the damage probability vs. 
demand parameter interrelationship (i.e. Figure 4) or to be 
calculated using the median value of DM given by Equation 
8 combined with the dispersion of the damage model βdm. 

2.4 Interpreting Damage in terms of Financial Losses 

Damage is likely to impair the performance of the system and 
some repair work may be needed to restore the original (i.e. 
undamaged) level of functionality of the system. Hence, there 
certainly exists a strong correlation between the damage 
measure and the money required to repair the system to 
regain its full functionality, referred to as financial loss. For 
generic purposes, the financial implication of damage is 
specified in terms of loss ratios, defined as the ratio of 
financial loss (repair/replacement cost) to the replacement 
cost (i.e. value of the system). Obviously, the value of the 
loss ratio varies between zero (for no damage and normal 
operational performances) to 1.0 (for complete loss or ruin,  
necessitating total replacement). The loss ratio may be 
specified either as a discrete or continuous function of the 
damage  measure, and in continuous form the relationship 
between the loss ratio and the damage measure can be 
expressed as: 

( )DMfLR 6
~

=    (13) 

in which RL
~

 = median value of the damage measure; and 
f6(DM) = a function that depends on the physical 
characteristics of the system. In graphical form, the 
interrelationship given by Equation 13 may be shown as in 
Figure 6. The loss model is usually established based on 
engineering judgement, and hence has uncertainty associated 
with it .  The loss model uncertainty can be carried forward 
through its lognormal coefficient of variation βlm. 

 
Combining Equations 9 and 13, the financial loss ratio can be 
expressed in terms of annual frequency as 

 ( )aR PfL 7
~

=    (14) 

in which f7(Pa) = a function which is the product of functions 
f5 and f6. Figure 7 is the graphical representation of Equation 
14, which is known as the economic resilience curve (also 
called the financial hazard curve). This curve gives the 
annual probability of incurring a given financial loss.  
Nevertheless, the relationship between the total loss ratio and 
the annual frequency also has an uncertainty which can be 
fitted to a lognormal distribution. The lognormal coefficient 
of variation of the financial hazard curve (denoted as β f)  
results from the hazard-survival variability and the loss 
model uncertainty, and can be estimated as 

22
lmsf βββ +=    (15) 

 

As shown in Figure 7, similar curves giving different level of 
confidence in the predicted financial loss can be generated 
from the median curve and the lognormal coefficient of 
variation βf. In probabilistic terms, the annual frequency of 
the loss ratio exceeding a given value lr, denoted as Pa [LR = 
lr], can be expressed in discrete and continuous forms as in 
the following two equations.  

[ ] [ ] [ ]∑ ≥=≥
idmall

iairRrRa dmPdmlLPlLP |            (16) 

[ ] [ ] [ ]∫ ≥=≥
1

0

| dmdPdmlLPlLP arRrRa               (17) 

in which Pa [dm ] is the annual probability of the damage 
measure exceeding a given value dm ; and P [LR = lr | dm ] is 
the conditional probability of the financial loss ratio 
exceeding a prescribed value lr when the damage measure is 
dm . The former (i.e. Pa [dm]) can be obtained from the 
system resilience curve (Figure 5) and the later (i.e. P [LR = lr  
| dm ]) can either be obtained from the probabilistic 
interrelationship between the loss ratio and the damage 
measure (i.e. Figure 6) or be calculated using the median 
value of LR from Equation 13 combined with the lognormal 
coefficient of variation of the loss model β lm.  

2.5 Calculating Financial Risk 

Total financial risk can be expressed as an Expected Annual 
Loss (EAL), and can thus be calculated by integrating the loss 
ratio over all possible annual frequencies of the hazard; i.e. 
between 0 and 1. A general equation representing this 
integral in deterministic and continuous form is: 

∫=
1

0

aR dPLEAL    (18) 

in which EAL = expected value of the annual financial loss.  
Equation 18 is graphically represented in Figure 8, which 
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shows that the expected annual loss is, in fact, the area 
subtended by the financial hazard curve (loss ratio vs. annual 
frequency curve). Hence, integrating the area beneath the 
financial hazard curve (i.e. LR vs.  Pa graph), as shown in 
Figure 8, gives the expected annual loss. 

 
In discrete form, the expected annual loss (EAL) can be 
probabilistically calculated as shown in the following 
equation 

[ ] [ ]( )∑ +
+ −







 +
=

irlall
iraira

irir lPlP
ll

EAL
,

1,,
1,,

2
          (19) 

in which Pa [lr] is the annual frequency of the loss ratio 
exceeding a given value lr, which can be obtained from the 
financial hazard curve (Figure 7). 

If all inter-relationships are represented as continuous 
functions and combined, the expected annual loss can be 
expressed as a quadruple integral as  

[ ] [ ]

[ ] [ ]IMdPIMEDPdP

EDPDMdPDMLdPLEAL

a

RR

|

||
1

0

1

0

1

0

1

0
∫ ∫ ∫ ∫=

      (20) 

in which P[A|B] is the conditional probability of A for a 

given value of B; and dP[A|B] is the derivative of the 
conditional probability P[A|B] with respect to A. 

3. APPLICATION 

The previous section has set forth the theoretical foundations 
for estimating the expected financial losses to a constructed 
facility when exposed to all possible scenarios of a particular 
hazard type. It has been shown that there is an interplay 
between facility capacity and the demand imposed by the 
given hazard. When these demands exceed a certain capacity 
threshold, damage is incurred which has a certain probability 
of occurrence. By expressing the damage in terms of loss 
ratios it is possible to compute the expected annual loss to the 
constructed facility. The expected annual loss is synonymous 
to the magnitude of an insurance policy needed to fully cover 
these losses for the prescribed hazard. The expected annual 
financial risk can be elegantly expressed, mathematically, in 
terms of a quadruple integral equation. 

The proposed methodology is general and can be applied to 
estimate expected annual loss due to any kind of natural 
hazard on any type of constructed facility [Dhakal and 
Mander 2005].  To clarify the application of the 
methodology, financial risk assessment of a reinforced 
concrete highway bridge due to seismic hazards is presented 
here. 

3.1 Seismic Risk Assessment of RC Bridges 

The generic methodology established so far is next applied in 
assessing the financial implications of earthquake hazard 
exposure to reinforced concrete bridges. For this purpose, a 
bridge pier designed [Tanabe 1999]  using the New Zealand 
design code [NZS3101 1995] is adopted. The pier is 7 m high 
and is taken from a “long” multi-span highway bridge on 
firm soil with 40 m longitudinal span and 10 m transverse 
width. The weight of the super-structure reaction at each pier 
is assumed to be 7,000 kN. The bridge is considered to be 
located in a high seismic zone in New Zealand, where the 
design basis earthquake is characterised by a peak ground 
acceleration of 0.4g. The elevation view of the bridge and the 
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1 

Figure 8 Estimation of annual financial risk  
with a given confidence level 
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design parameters for the pier are illustrated in Figure 9.  

In order to estimate structural performance under seismic 
loads, Vamvatsikos and Cornell [2004] presented a procedure 
called “Incremental Dynamic Analysis (IDA)”. This 
approach involves performing nonlinear dynamic analyses of 
a prototype structural system under a suite of ground motion 
records, each scaled to several intensity levels designed to 
force the structure all the way from elastic response to final 
global dynamic instability (collapse). From IDA curves, limit 
stat es can be defined. The probability of exceeding a 
specified limit state for a given intensity level can also be 
found. Furthermore, the final results of IDA are in a suitable 
format to be conveniently integrated with a conventional 
seismic hazard curve in order to calculate mean annual 
frequency of exceeding a certain limit-state capacity. IDA 
can give a clear indication of the relationship between the 
seismic capacity and the demand. Engineers can estimate 
principal response quantities, such as the maximum drift of 
the structure for a given intensity measure (IM) such as peak 
ground or spectral acceleration. 

Here, IDA is performed to generate the PGA versus 
maximum drift relationship and the IDA results are 
quantitatively modelled and integrated into a probabilistic 
risk analysis procedure whereby the seismic intensity-
recurrence relationship (the seismic demand) is viewed with 
respect to the damage propensity of a specific bridge 
structure (structural capacity). Confidence intervals and 
damage outcomes for given hazard intensity levels, such as 
the Design Basis Earthquake (DBE) or the Maximum 
Considered Earthquake (MCE), can then be evaluated.   

The sequence of the steps of the full financial based risk 
assessment to be followed is explained below in detail. 

4. SEISMIC HAZARD 

4.1 Step 1: Earthquake-Recurrence Relation 

The annual probability of occurrence of an earthquake 
depends on its magnitude. According to the New Zealand 
loading standard [NZS4203 1992], the Design Basis 
Earthquake (DBE) is an earthquake which ha s 10% 
probability of occurrence in 50 years; i.e. which has a return 
period of 475 years.  Similarly, Maximum Considered 

Earthquake (MCE) is defined as an earthquake with 2% 
probability of occurrence in 50 years; i.e. approximately 
2450 years return period. A return period dependent scale 
factor λT such that ag

(T=Tr)=λTag
(T=475yrs) (where ag

(T=Tr) is the 
PGA of an earthquake with a return period of Tr) is required 
to scale a given spectra to required return periods (or annual 
probabilities). Values for the return period factor have been 
derived by drawing a representative line through the hazard 
curves (PGA as a function of a return period) as illustrated in 
Figure 10.  

This seismic hazard curve is described by the following 
equation: 

q
a

g
q

r
ggT

T
g

p

aT
aaa r

)475(475

)475(
)475()475()( =







== λ         (21) 

in which  ag
(Tr)

 = PGA relevant to its return period ; ag
(475) = 

PGA with a return period of 475 years (10% probability in 50 
years) ; Tr = return period; pa = annual probability (pa=1/Tr); 
and q = an exponent based on local seismicity. The value of q 
= 0.333 is representative of NZ seismicity. 

5. INCREMENTAL DYNAMIC ANALYSIS (IDA) 

5.1 Step 2: Selection of Ground Motion Records 

In order to perform IDA, a suite of ground motion records is 
needed. In their previous study, Vamvatsikos and Cornell 
[2004] used 20 ground motion records to analyse mid-rise 
buildings in order to provide sufficient accuracy of seismic 
demands. The same ground motions are adopted for this 
study and are presented in Table 1. These earthquakes have 
magnitudes in the range of 6.5-6.9 with moderate epi-central 
distances mostly in the range of 16 to 32 km; all these ground 
motions were recorded on firm soil.  

Figure 11 (a) shows the response spectra for each of the 20 
earthquake ground motions scaled to the same IM, that is 
PGA = 0.4g. A significant degree of record-to-record 
randomness is evident with respect to the median spectral 
curve. Figure 11 (b) presents a plot of the lognormal  
coefficient of variation (βD), sometimes referred to as the 
record-to-record dispersion across the spectrum.  For this 
suite of earthquakes it is evident that the dispersion stays 
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close to β = 0.38, provided that the period is less than about 
1.6 seconds. 

Table 1 Selection of 20 earthquake records 

No Event Year φ*1 M*2 R*3(km) PGA(g) 

1 Loma Prieta 1989 90 6.9 28.2 0.159 
2 Imperial Valley 1979 135 6.5 31.7 0.057 
3 Loma Prieta 1989 255 6.9 25.8 0.279 
4 Loma Prieta 1989 270 6.9 21.4 0.244 

5 Loma Prieta 1989 285 6.5 22.3 0.179 
6 Imperial Valley 1979 85 6.9 23.6 0.309 
7 Loma Prieta 1989 270 6.9 28.8 0.207 
8 Imperial Valley 1979 140 6.5 21.9 0.117 

9 Imperial Valley 1979 90 6.5 15.1 0.074 
10 Loma Prieta 1989 0 6.9 28.8 0.371 
11 Loma Prieta 1989 360 6.9 28.8 0.209 

12 Superstition Hills 1987 90 6.7 24.4 0.180 
13 Imperial Valley 1979 282 6.5 28.7 0.254 
14 Imperial Valley 1979 230 6.5 21.9 0.139 
15 Imperial Valley 1979 180 6.5 15.1 0.110 

16 Loma Prieta 1989 0 6.9 16.9 0.370 
17 Superstition Hills 1987 360 6.7 24.4 0.200 
18 Imperial Valley 1979 45 6.5 31.7 0.042 
19 Loma Prieta 1989 165 6.9 25.8 0.269 

20 Loma Prieta 1989 90 6.9 16.9 0.638 
1 Component, 2 Moment Magnitudes, 3 Closest Distances to 
Fault Rupture, and Source: PEER Strong Motion Database, 
http://peer.berkeley.edu/smcat/ 
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Figure 11 Ground motion records normalised to Intensity 
measure of PGA=0.4g 

Lee and Foutch [2002] compared the difference between the 
median responses and both the 84th percentile and 95th  
percentile values. Their results showed that the median 
response should be multiplied by a factor between 1.5 and 2 
to estimate the 84th percentile response and by a multiplier 
greater than 2.0 to generate the 95th percentile value. This 
result is consistent with the findings of Martinez [2002] who 
also investigated the variability of results from some 20 
earthquake ground motions scaled so that they each had a 
one-second spectral acceleration of 1g. Hence, the substantial 
spread of results away from the median values seen in Figure 
11 is not a rare distribution.  

5.2 Step 3: Perform Incremental Dynamic Analysis 

A nonlinear computational model of the prototype bridge pier 
should then be developed. A check should be made that the 
dispersion of response demand (βD) in the neighbourhood of 
the natural period is reasonable. If the dispersion is excessive, 

then an alternative IM should be considered and this step 
should be repeated until the dispersion is reasonable. 

Once the model and the ground motion records have  been 
chosen, IDA is performed. To start the analysis, the 
earthquake record chosen are scaled from a low IM to several 
higher IM levels. For each increment of IM, a nonlinear 
dynamic time history analysis is performed. For each 
earthquake, analyses are repeated for higher IM’s until the 
analysis cannot proceed further due to numerical instability; 
that is physical collapse occurs. For the bridge used in this 
study, the dynamic time history inelastic analyses were 
carried out using a nonlinear FE analysis program 
RUAUMOKO [Carr 2004]. The pier is modelled by using 
Takeda’s model as shown in Figure 12 (a). The acceleration 
time history of one of the earthquakes (EQ 17) is shown in 
Figure 12 (b). The hysteresis (drift vs. base shear) cur ve and 
the response drift obtained from the time-history analysis are 
shown in Figures 12 (c) and (d), respectively.  

Locating the maximum drift observed in an analysis gives 
one point for the PGA  versus maximum drift plot. As shown 
in Figure 13  (a), connecting such points obtained from all the 
analyses using one earthquake record of scaled to different 
intensity (PGA) gives the IDA curve for that individual 
earthquake. This process is then repeated for all earthquakes 
in the suite, as is illustrated in the left side of Figure 13 (b) . It 
may also be of interest to analyse the variability of the 
response outcomes for a given level of IM. Results typically 
show a lognormal distribution of drift outcomes. The 
dispersion (β) is also plotted on the right side of Figure 13 
(b). T his shows that the dispersion is mostly constant until 
the scaled PGA of any earthquake is not enough to collapse 
the pier. This partially justifies the selection of PGA as the 
intensity measure of seismic hazards.  
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(a) IDA data points for one earthquake 
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(b) IDA curves for the 20 earthquakes and the lognormal 

coefficient of variation (β)  

Figure 13 IDA curves and variation among the 20 records 
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5.3 Step 4: Modelling IDA Curves and Statistical 
Outcomes 

In their previous study, Vamvatsikos and Cornell [2004] 
modelled their IDA curves by using multiple interpolation 
spline functions. It is considered that such an approximation 
is cumbersome and not particularly useful for subsequent 
analysis. Therefore, in this study several single functional 
relations were explored, and the Ramberg-Osgood (R-O) 
equation is adopted as the most suitable. The R-O relation is 
given by:  
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in which ? = drift (the engineering demand parameter); K = 
the slope of the IDA curve in initial proportional range; ac = 
“critical” earthquake acceleration intensity that occurs at the 
onset of large drifts that subsequently lead to collapse; ag = 
earthquake acceleration (intensity measure); and r = constant.  

The R-O equation can also be written in the form 
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θ
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in which ?c = ac / K is a “critical” drift  (critical demand 
parameter). 

The significance of the three required control parameters (ac, 
r, and either ?c or K) is examined in Figure 14 (a). As the 
curvature parameter r increases the curve tends toward a 
bilinear case (when r? ∞ ). If the input intensity (PGA) is 
greater than the “critical” value (i.e. ag >ac) then the response 
is such that ? >  2?c and structural instability (collapse) is 
imminent. 

 

 

 
Table 2 R-O modelling and parameter identification 

No ac (g)  θc (%) r 

1 0.80 2.1%  25 
2 1.80 4.3%  15 
3 1.05 4.2%  28 
4 1.80 4.0%  18 
5 1.60 6.7%  15 
6 1.20 4.4%  34 
7 0.75 2.3%  5 
8 0.78 2.0%  36 
9 0.60 2.0%  9 
10 0.70 4.7%  20 
11 0.78 3.7%  25 
12 0.60 2.9%  15 
13 1.20 4.8%  24 
14 1.40 2.5%  18 
15 1.00 2.6%  19 
16 3.50 5.6%  18 
17 0.60 4.0%  25 
18 2.10 3.8%  11 
19 1.05 4.6%  19 
20 3.10 5.0%  35 

10 th 2.90 5.9%  34.8 
50 th 1.32 3.8%  20.7 
90 th 0.60 2.5%  12.3 

β 0.61 0.34 0.41 

(a) Takeda model (b) Input earthquake: EQ17 

(d) Time history of drift response  (c) Hysteresis curve 

Figure 12 Modelling and result of time-history dynamic 
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 (c): Fitted IDA curves and the 10%, 50% and 90% fractiles  

 

Figure 14 Modelling IDA Curves and Generating Response 
Demand Curves 

In Equation (22) the three control parameters (ac,  r, and 
either ?c or K) are estimated using nonlinear least squares 
analysis for each individual earthquake gro und motion IDA 
data set. Thus obtained values of the control parameters for 
the different earthquakes are listed in Table 2. Figure 14 (b) 
illustrates the fit between the IDA data points and the fitted 
R-O curve for one specific case. 

 

Although the results for each of the control parameters are 
different, they can be examined collectively and a statistical 
analysis on the parameters can then be performed. Studies 
show that the parameters are lognormally distributed. 

Therefore by ascertaining median values of each parameter 
the 50th percentile IDA response can be represented by an 
individual R-O median curve. Likewise by examining 
variability of individual IDA distributions, parameters that 
represent curves of other bounds of interest, such as the 10th 
and 90th percentiles may be found. Figure 14 (c) illustrates 
the fitted IDA curves for the suite of 20 earthquakes along 
with the parameter fitted R-O curves for the 10th, 50 th and 
90th percentile response demand. 

6. QUANTIFICATION OF DAMAGE 

6.1 Step 5: Assign Damage Limit States  

Once the three (10th, 50th  and 90 th percentile) lines have  been 
generated, it is possible to determine the expected drift for an 
earthquake with a certain level of intensity. Emerging 
international best practice for seismic design is tending to 
adopt a dual level intensity approach that is (i) a Design Basis 
Earthquake (DBE) represented by a 10% in 50 years ground 
motion; and (ii) a Maximum Considered Event (MCE) 
represented by a 2% in 50 years earthquake. 

Several damage limit-states can be defined on the IDA curves 
developed. In their previous research, Vamvatsikos and 
Cornell [2004] applied building use criteria of Immediate 
Occupancy (IO) and Collapse Prevention (CP) limit-states to 
their IDA curves. In this study, the damage states defined by 
Mander and Basoz [1999], as listed in Table 3, are extended 
to the IDA curves developed for bridges. Thus defined 
damage states are assigned to the IDA curves in Figure 15. 

Table 3 Damage states index in HAZUS [Mander and Basoz 
1999] 

90th

10th 50th

Pre-yield
Repairable 

Damage

Slight but 
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Damage

Irreparable 

Damage
Incipient Damage
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Figure 15 Assigning damage states to the IDA fractile 
curves 

DS1 represents elastic behaviour, it therefore concludes at the 
onset of damage which is best defined at the yield drift of the 
structure. Also, DS5 commences at the onset  of collapse, and 

 Damage 
State 

Failure 
Mechanism  

Repair 
required Outage  

DS1 None Pre-Yielding None No 

DS2 Minor/ 
Slight 

Post -Yielding         
Minor spalling 

Inspect, 
Adjust, 
Patch 

<3 days 

DS3 Moderate Post -Spalling  
Bar buckling 

Repair 
components <3 weeks 

DS4 Major/ 
Extensive Bar fracture Rebuild 

components <3 months 

DS5 Complete/
Collapse Collapse Rebuild 

structure >3 months 

a g
/a

c 

Incipient toppling 
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as described above this is best defined when θ > 2θc (Figure 
14). The other damage stages (DS2, DS3, and DS4) are more 
subjective in their definitions. It is suggested that the 
boundary separating DS3 and DS4 be defined at a level of 
drift where the structure would be deemed to have suffered 
irrepara ble damage such that the structure is not likely to 
perform its function as evidenced by: (i) excessive permanent 
drift at the end of the earthquake; (ii) excessive level of 
damage to critical elements such as buckling of longitudinal 
reinforcing bars or the fracture of transverse hoops and/or 
longitudinal reinforcing bars. Finally, the boundary 
separating DS2 and DS3 should be defined as a level of 
damage which would cause temporary loss of function and 
immediate repairs are needed to restore the full functionality 
of the structure. This usually occurs when spalling of cover 
concrete is evident. At drifts below this boundary, damage 
(categorized as DS2) is considered to be slight and tolerable.  

6.2 Step 6: Derivation of Drift Hazard Curve  

This step could have also been before the definition of 
damage states; as the sequence of operations in the generic 
methodology suggests. The developed IDA curves can be 
modified more elegantly by substituting the hazard-
recurrence relationship; i.e. Equation (21); into Equation 
(22), thereby resulting in:  

( ) 
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Note that the parameters ac, ?c, and r depend on confidence 
interval. According to Martinez [2002], for an appropriate 
closed-form of the cumulative lognormal probability density 
function, the confidence interval can be estimated as 
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in which ßC/D = composite lognormal coefficient of variation; 
and x~  = median (50 percentile) of the distribution of 
variable x. Using this expression the value of the parameter 
xCI for a given confidence interval CI can be estimated as 
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An example of the resulting integrated risk curves is 
presented graphically in  Figure 16 (a), which can be used to 
estimate the annual probability of exceeding a given damage  
state with a certain degree of confiden ce.  

In the foregoing analysis it must be emphasised that the 
ultimate variability in response results entirely from the 
randomness of the input motion--that is the seismic demand. 
This is because the computational modelling is conducted 
using crisp input data. H owever, the structural resistance both 
in terms of strength and displacement capacity is also 
inherently variable. Moreover, the computational modelling, 
although it may be sophisticated, is not exact; there is a 
measure of uncertainty that exists between the predicted and 
the observed response. 
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(a) Confidence intervals of response expectations 

based on demand randomness only and also the 
composite 90 percentile curve based on 
randomness of demand and capacity modelling 
uncertainty 
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(b) Composite confidence interval curves with demand 

and capacity modelling uncertainty 

Figure 16 Quantitative risk a ssessments 

To encompass the record-to-record randomness of seismic 
demand along with the inherent randomness of the structural 
capacity (aleotoric uncertainty), together with the uncertainty 
due to inexactness of the computational modelling (epistemic 
uncertainty), it is necessary to use an integrated approach as 
suggested by Kennedy et al [1980]. The composite value of 
the lognormal coefficient of variation can be expressed as 

222
/ UDCDC ββββ ++=       (26) 

in which βC = coefficient of variation for the capacity; βD = 
coefficient of variation for the demand = 0.25 assumed in this 
study; and βU = lognormal dispersion factor for modelling 
epistemic uncertainty = 0.2 assumed in this study. 

The hazard recurrence curves including the uncertainty from 
the computational modelling can be seen as the dotted line 

with 5.025.02.038.0 222
/ =++=DCβ  in Figure 16  (a).  

For detailed assessment, additional confidence intervals can 
also be plotted with the 95 th, 80th, 70 th and 60 th percentile 
curves shown in Figure 16 (b). 

6.3 Step 7: Confidence Intervals for the Damage States  

Figure 16 is replotted in another form as shown in Figure 17.  
It gives the probability of the defined damage states not being 
exceeded when earthquakes hit the structure. Based on the 
annual probability or the return period of the earthquakes, 
Figure 17 shows the likelihood of the induced damage not 
crossing the limits of the five damage states.  
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Figure 17 Quantitative Risk Assessments 

This is formed by substituting Equation (23b) into Equation 
(24) to give 
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The information in Figure 17 is reinterpreted in tabular form 
in Table 4. Table 4a shows the probability of the damage 
states not being exceeded. For example, the third row means 
that if an earthquake of annual frequency of 0.001 (i.e. return 
period of 1000 years) strikes, the probability of DS1 not 
being exceeded is 20%; and the corresponding probabilities 
for others damage states (DS2, DS3, and DS4) are 75%, 
85%, and 90%, respectively. 

Table 4a Probability of exceeding different damage states  

Pa P[DS1]     P[DS2]   P[DS3]     P[DS4]     P[DS5]    

0.1 1 1 1 1 1  

0.01 0.6 1 1 1 1  

0.001 0.2 0.75 0.85 0.9 1  

0.0001 0 0.25 0.51 0.56 1  

0.00001 0 0 0.2 0.3 1  

 
Table 4b Probability of being in a given damage state 

Pa P[DS1]     P[DS2]     P[DS3]     P[DS4]     P[DS5]    

0.1 1 0 0 0 0 

0.01 0.6 0.4 0 0 0 

0.001 0.2 0.55 0.1 0.05 0.1 

0.0001 0 0.25 0.26 0.05 0.44 

0.00001 0 0 0.2 0.1 0.7 

Table 4b presents the various probabilities of being in a given 
damage state. For example, the third row means that when an 
earthquake with an annual frequency of 0.001 (approximately 
1000 years return period) strikes, there is a 20% chance that 
the damage state will be DS1, 55% chance that the damage 
will be in the range of DS2 and so on. The same information 
can also be reinterpreted in terms of the proportion of a large 
number of piers in similar bridges likely to undergo different 
levels of damage in a seismic event of given intensity. For 
example, the third row also indicates that in an earthquake 
with an annual frequency of 0.001 among a total of 1000 
similar piers, about 200 piers (i.e. 20%) are likely to 
experience DS1, and about 550, 100, 50 and 100 piers are 
likely to experience DS2, DS3, DS4 and DS5, respectively  

7. ESTIMATION OF FINANC IAL RISK 

7.1 Step 8: Likely Financial Losses Incurred by 
Different Damage States  

For calculating financial risk, one needs to know what the 
different damage states mean in terms of financial loss. To 
generalize the discussions, the cost of repair or 
retrofit/strengthening needed to restore the functionality of 
the bridge is normalized with respect to the replacement cost. 
The normalized cost is referred to as the loss ratio hereafter. 
The assumed values and likely ranges of loss ratios for 
different damage states are shown in Table 5.  

Table 5 Assumption: Loss ratio s for different damage states 

 DS1 DS2 DS3 DS4 DS5 

Assumed 0 0.1 0.3 1 1 

Range 0 0.05-0.15 0.2-0.4 1.0-1.2 1 

As DS1 is the pre-yield damage state, neither damage nor 
repairs are expected. It follows that there are no financial 
losses, hence the loss ratio for DS1 is zero. “Slight but 
tolerable damage” under DS2 does not impair post-
earthquake functionality, but may require minor repairs at 
some stage. It is assumed herein that the loss ratio for DS2 
will vary between 0.05 and 0.15, and a value of 0.1 is 
adopted for further calculations. Similarly, DS3 refers to 
“moderate but repairable damage” such as spalling of cover 
concrete, wide cracks due to large plastic strain in the 
reinforcing bars etc. Repairs are expected to restore 
functionality. Accordingly, the loss ratio for DS3 may vary 
from 0.2 to 0.4, and a representative value of 0.3 is adopted 
in the present analysis. “Irreparable damage” under DS4 
generally means that although collapse has not occurred, the 
damage is too costly or uneconomic to repair, thus complete 
replacement is needed. Hence, the loss ratio for DS4 cannot 
be less than 1, and a value of 1 is used here. Finally, DS5 
refers to “incipient damage or collapse” requiring total 
replacement. Obviously, the loss ratio for DS5 is 1. 

7.2 Step 9: Calculating and Integrating the Annual 
Financial Risk  

Next, the contribution of different damage states to the 
financial loss is estimated. Table 6 lists the probable loss 
ratios corresponding to different damage states when 
earthquakes with annual frequencies of 0.1, 0.01, 0.001, 
0.0001, and 0.00001 strike. The values in Table 6 are the 
product of the probability of being in a given damage state 
(obtained from Table 4b) in earthquakes of different annual 
frequencies and the assumed loss ratio for the corresponding 
damage state from Table 5. This can also be represented by 
the following equation: 

[ ] [ ] [ ]iRiiR DSLDSPDSLP ×=|   (28) 

Table 6 Conditional probability of loss ratio 

Pa P[LR|DS1] P[LR|DS2] P[LR|DS3] P[LR|DS4] P[LR|DS5] 

0.1 0 0 0 0 0 

0.01 0 0.04 0 0 0 

0.001 0 0.055 0.03 0.05 0.1 

0.0001 0 0.025 0.078 0.05 0.44 

0.00001 0 0 0.06 0.1 0.7 

DS1 does not incur any financial loss as it does not need any 
repair. Similarly, the financial loss incurred by earthquakes 
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of 0.1 or higher annual probability is also nil as such frequent 
events do not incur any damage which requires repair or 
replacement (DS2 or higher category).  

As the probability of being in more severe damage states are 
multiplied by higher loss ratios (as shown in Table 5, LR is 
higher for DS4 and DS5 than for others), the higher damage 
states contribute more to the probable loss although the 
likelihood of the earthquake-induced damage falling into 
these severer categories is not high.  

The total probable financial loss ratio due to earthquakes of a 
given probability is the sum of the corresponding values for 
the five damage states. Figure 18 plots the total probable loss 
ratio against the annual probability of the earthquakes. This 
curve gives information on what would be the fin ancial loss 
if an earthquake of a given annual probability strikes once. 
As expected, the larger and rarer the event the greater the 
financial loss. Conversely, for frequent, but low intensity 
events, the single-event loss is small.  
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Figure 18 Probable financial loss 

Table 7 Annual expected loss calculation 

Pa P[LR] ∆EAL 
$1 million 

EAL 
$1 million 

  0 

0.1 0  

  $1800 

0.01 0.04  

  $1240 

0.001 0.235  

  $370 

0.0001 0.593  

  $70 

0.00001 0.86  

$3480 

The total probable loss for earthquakes of different frequency 
is also shown in Table 7 (second column). In the third 
column of Table 7, the annual financial risk due to 
earthquakes of annual probability within a range is 
calculated. In fact, it is the area subtended by the economic 
hazard curve (Figure 18) between two points on the x-axis. 
Note that the annual probability is plotted in logarithmic 
scale in Figure 18, and the absolute value of the interval 
between any two points on the x-axis decreases by an order 
of ten towards the left. Accordingly, the absolute value of the 
area covered is also decreasing rapidly in that direction (i.e. 
direction of decreasing annual probability) in spite of a 
higher value of the loss ratio.  

 

Figure 19 Annual financial risk due to earthquakes of 
different frequency ranges 

Thus calculated annual financial risk contribution of 
earthquak es in different ranges of earthquake frequencies is 
also depicted in Figure 19. Looking at the trend in Table 7 
and Figure 19, it is reasonable to assume that the earthquakes 
with annual frequencies smaller than 0.00001 (return period 
of more than 10000 years) will pose negligible financial risk 
and is hence not included. It is the more frequent and smaller 
events that pose more financial risk, and the large 
earthquakes amount to very small risks due mainly to their 
very small annual frequency of occurrence (large return 
period). As is evident in Table 7 and Figure 19, the total 
annual financial risk (i.e. the financial risk posed by all 
possible earthquakes) amounts to about 0.35% of the total 
damages bill (i.e. replacement cost). In other words, the 
expected annual financial loss is $3,500 per $1 million of 
bridge value. Some 50% of this value corresponds to the risk 
posed by frequent but modest size earthquakes with an 
annual frequency in the range between 0.01 and 0.1 (i.e. 
return periods between 10 and 100 years).  

7.3 Limitation and Future Work  

There are several interrelationships involved in estimating the 
annual financial risk. The natural hazard recurrence 
relationship is developed based on historical data; the PGA-
maximum drift relationship is derived from the results of 
IDA; the maximum drifts corresponding to different damage 
states are assumed based on experience; and the loss ratios 
for the different damage states are decided based on 
engineering judgment. There are uncertainties associated 
with these interrelationships which are quantitatively 
incorporated in the methodology in the form of coefficient of 
variation. Nevertheless, the uncertainties may differ from 
those considered in the derivation, and the change in the level 
of uncertainties will influence the calculated annual financial 
risk. Recent work by der Kiureghian [2005] has shown that 
the change in the extent of uncertainty will specially affect 
the risks posed by the frequent and modest size events. 
Hence, the calculated expected annual financial loss due to 
earthquakes with annual frequencies of more than 0.01 
(return periods of less than 100 years) may differ from that 
described in the foregoing analysis.  

The definition of loss ratios for different damage states and 
the values assigned to them are also somewhat subjective. 
The values of the loss ratios are expected to be in the range 
shown in Table 5, but within this range the loss ratios may 
have any value. A sensitivity analysis is conducted here to 
investigate the effect of the loss ratios assumed for DS2, DS3 
and DS4. As the definitions of DS1 and DS5 make it almost 
certain than the corresponding loss ratios are 0 and 1, they 
are not included in the sensitivity study.  
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Table 8 presents the results of the sensitivity analysis where 
the financial loss per $1 million of asset value is listed for 
different assumed loss ratios. It is evident that the annual 
financial risk does not depend much on the loss ratios 
assigned to DS3 and DS4, but is particularly sensitive to the 
loss ratio for DS2. This indicates that the damages inflicted 
by more frequent but less severe events contribute the most 
to the overall financial risk. 

Table 8 Effect of loss ratios on the annual financial risk 

Sensitivity of annual financial risk (FRA) w. r. to the loss ratios of 

DS2 DS3 DS4 

LR(DS2) Loss / $1M LR(DS3) Loss / $1M LR(DS4) Loss / $1M 

0.05 $2340 0.2 $3410 0.8 $3420 

0.10 $3480 0.3 $3480 1.0 $3480 

0.15 $4610 0.4 $3540 1.2 $3530 

From an insurance point-of-view, the risk of these smaller 
and more frequent events should be carried by the owner. 
This can be achieved by setting an appropriate deductible to 
the policy and thus keeping the remainder of the insured risk 
affordable for the owner.  

The definition of damage states and the drift ratios 
corresponding to the different damage states are also 
subjective, particularly the boundaries between DS2 and 
DS3, and DS3 and DS4. The damage states are assumed as 
discrete functions of drift although ideally damage limits 
should be expressed in a probabilistic or fuzzy manner. Even 
when the discrete function is accepted, a small change in the 
drift ratios corresponding to the boundaries of different 
damage states will indicate somewhat different financial 
losses. Clearly, this should be the subject of future work.  

8. CONCLUSIONS 

A methodology  for estimating the overall financial risk to a 
constructed facility when exposed to a particular hazard has 
been established,  which can be expressed mathematically in 
terms of a quadruple integral equation. Based on the 
application of the proposed methodology to bridge structures 
presented herein, the following conclusions can be drawn: 

1. Inelastic dynamic analysis (IDA) is an elegant method 
of assessing seismic response in terms of a given 
engineering demand parameter (ED P) such as column 
drift to the applied seismic ground motion expressed in 
terms of an intensity measure (IM) which for this study 
was the peak ground acceleration (PGA) of the 
earthquake motion. IDA is a way of identifying 
performance through to the IM that leads to true failure 
via toppling.  

2. Results of IDA runs for several different earthquakes 
can be used to assess the record-to-record randomness 
of response. For the medium -field ground motion suite 
adopted in this study, the lognormal coefficient of 
variation for this randomness was found to be in the 
order of β = 0.4. 

3. When combined with the sources of aleotoric and 
epistemic uncertainty a combined lognormal variation of 
response with respect to overall median performance 
can be taken as βC/D = 0.5. 

4. Results from the IDA study can be used to assess the 
overall financial risk exposure to earthquake hazard for 
a given constructed facility. This can be expressed in 
terms of a Loss Ratio (LR) with respect to an earthquake 
ground motion that has an annual frequen cy, Pa. Using 
the total probability theorem, this relationship can be 

integrated to give the financial risk in terms of the 
expected annual loss. 

5. For the typical highway bridge structure built to NZ 
codes and specifications that was examined herein, if 
located in a seismic zone where PGA = 0.4 (such as 
Wellington), then the expected annualised loss due to 
earthquake damage is some $3500 per $1 million of 
asset value. This is synonymous to an annual in 
perpetuity insurance policy to cover the expected losses. 

6. Although the foregoing analysis sets forth a sound 
theoretical basis for examining the financial risk in 
terms of expected losses to constructed facilities, more 
work needs to be done before general application is 
made. First, a better description to the hazard-recurrence 
relations is needed. Results have shown that much of the 
expected damage arises from the more frequent but less 
severe events in the range of return periods from 10 to 
100 years. If this were indeed true there would also be 
an empirical body of field evidence to support this 
prediction. An approach that assumes that earthquakes 
are a Poisson arrival process with a mean occurrence of 
say ν = 50 to 100 years (or even more in the case of the 
alpine fault) appears to be a promising place to start 
modifying the theory. Further sensitivity analyses to all 
principal parameters also need to be conducted. 
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